Mergers and Acquisitions under Common Ownership

By Miguel Antón, Florian Ederer, Mireia Giné, and Bruno Pellegrino

Over the past quarter century, the U.S. economy has seen an increase in employment and revenue concentration across many industries (Grullon, Larkin and Michaely, 2019) and a concentration of corporate equity ownership among a small number of large institutional investors leading to the rise of common ownership (Azar, 2012; Backus, Conlon and Sinkinson, 2021). These trends have raised concerns about the role of antitrust enforcement, in particular its effectiveness of dealing with mergers.¹ In this paper we show that mergers increasingly occur between firms that sell similar products to consumers and also share the same set of owners. We further show that the economy-wide effects of mergers on profits, consumer surplus and total surplus are substantial even when firms are assumed to internalize common ownership concerns before mergers occur.

I. Theory

We employ the general equilibrium models of Pellegrino (2019) and Ederer and Pellegrino (2022) in which \(n \) single-product oligopolistic firms with overlapping ownership produce differentiated products and compete in a network game of Cournot oligopoly. Goods are modeled as linear bundles of characteristics. A representative agent consumes all the goods produced in the economy, supplies labor as a production input, and receives income from owning shares of the firms in the economy. This agent has quadratic utility over product characteristics and her consumption choice yields the following linear demand system

\[
\mathbf{p} = \mathbf{b} - (\mathbf{I} + \mathbf{\Sigma}) \mathbf{q}.
\]

where \(\mathbf{p} \) and \(\mathbf{q} \) are the price and quantity vectors, \(\mathbf{b} \) is the vector of demand intercepts which can be interpreted as measures of product quality, and \(\mathbf{\Sigma} \) is the \(n \times n \) matrix of price-quantity derivatives for all pairs of products.

Under the assumption that firms maximize a share-weighted sum of the profits earned by their shareholders, each firm \(i \)'s objective function is given by

\[
\phi_i \propto \pi_i + \sum_{j \neq i} \kappa_{ij} \pi_j
\]

where \(\kappa_{ij} \) is the weight that firm \(i \) attaches to firm \(j \)'s profits. It is defined as

\[
\kappa_{ij} = \frac{\sum_z s_{iz} s_{jz}}{\sum_z s_{iz} s_{iz}}
\]

where \(s_{iz} \) is the ownership share of firm \(i \) accruing to shareholder \(z \). \(\kappa_{ij} \) is equal to 0 when firms \(i \) and \(j \) do not have any shareholders in common and, loosely speaking, \(\kappa_{ij} \) is higher when the two firms are more similar in terms of their shareholders. The \(n \times n \) matrix \(\mathbf{K} \) contains the bilateral common ownership weights \(\kappa_{ij} \) for all the firms in the economy.

The Cournot-Nash equilibrium quantity allocation under common ownership \(\mathbf{q}^\Xi \) in which each firm \(i \) chooses its quantity \(q_i \) to maximize the weighted portfolio profits \(\phi_i \) of its shareholders is

\[
\mathbf{q}^\Xi = (2\mathbf{I} + \mathbf{\Sigma} + \mathbf{K} \circ \mathbf{\Sigma})^{-1} (\mathbf{b} - \mathbf{c})
\]

where the \(\circ \) operator denotes the Hadamard (entry-by-entry) product and \(\mathbf{c} \) is the vector

¹ The relationship between mergers and common ownership has previously been studied by Matvos and Ostrovsky (2008) and Antón et al. (2022). Conlon (2022) warns that incorporating common ownership into merger analysis may weaken antitrust enforcement.
of marginal costs. Under standard Cournot competition there are no common ownership effects and thus \(\kappa_{ij} = 0 \).

II. Data

To estimate the model presented in Section I, we map the various theoretical concepts to observed and identified variables and parameters.

A. Firm Financials

We measure revenues, variable costs, and fixed costs in our model by using data from Compustat. These variables correspond to accounting revenues, Costs of Goods Sold (COGS), and Selling General and Administrative (SGA) costs, respectively.

B. Text-Based Product Similarity

Hoberg and Phillips (2016) provide a time-varying empirical estimate of the matrix of product-based cosine similarities between firms by text-mining the business description section of 10-K forms of all publicly-listed U.S. firms. Specifically, for each firm \(i \) they use a vocabulary of 61,146 words to construct a normalized vector of word occurrences. Pellegrino (2019) shows how to identify the matrix \(\Sigma \) from the Hoberg and Phillips (2016) cosine similarity data.

C. Ownership Data

We calculate the matrix of common ownership profit weights \(K \) using the methodology of Ederer and Pellegrino (2022). We combine 13(f) data from Thomson Reuters obtained through the WRDS platform and from Backus, Conlon and Sinkinson (2021) who directly parsed the data contained in 13(f) forms.

III. Results

A. Features of Mergers

To describe patterns of mergers of public firms and how these patterns have changed over time we use the database of announced mergers of public firms constructed by Ewens, Peters and Wang (2019) and Phillips and Zhdanov (2013) which covers publicly-traded companies up to 2016. We restrict our attention to mergers that we can match to an announcement date. During this time there is no significant trend in the intensity of M&A activity among public corporations. The ratio of the number of merging firms to the number of total firm pairs has steadily remained at around 12 per million over our sample period.

Using the cross-price elasticities for all public firm pairs we can examine the evolution of M&A activity in terms of product...
Figure 2. Effect of Mergers on Total Profits

Note: Estimates of the annual effect of mergers on total profits under standard Cournot competition (black bars) and Cournot competition with common ownership (gray bars).

substitutability. To measure product market interaction among merging companies we utilize the diversion ratio DR_{ij} which is the change in quantity q_i demanded of product i for a price change p_j in product j that yields a unit decrease in the quantity demanded of product j:

$$ DR_{ij} = \frac{\partial q_i}{\partial p_j} \left(\frac{\partial q_j}{\partial p_j} \right)^{-1} = \frac{(I + \Sigma)^{-1}_{ij}}{(I + \Sigma)^{-1}_{jj}} $$

For every firm pair ij we compute the average common ownership weight κ_{ij} and the average diversion ratio DR_{ij}. We then construct (within-year) decile bins for both dimensions and compute what proportion of mergers of a pair of two firms falls into each one of the resulting bins. Figure 1 reports the distribution of mergers of public firms for 1996-2005 and 2006-2015 ordered along these two dimensions, the estimated diversion ratio and the level of common ownership between merging parties.

Over the entirety of our sample mergers were heavily concentrated among firm pairs with high diversion ratios. 65.2% of all mergers of public firms involved pairs of firms in the highest decile of diversion ratios. Mergers were also particularly frequent among firms with degrees of common ownership. 26.3% of all mergers fell in the highest decile of common ownership. Thus, taken together mergers were particularly frequent between firms that share a high degree of product similarity and ownership.

The tendency of mergers to occur between firms with high diversion ratios and high levels of common ownership slightly intensified over time. In the first part of sample 64.3% of mergers were among firm pairs in the highest decile of diversion ratios with this number rising to 66.7% in the second part. The increase over time of mergers with high common ownership mirrors that for product similarity. Between 1996 and 2005 35.4% of mergers were between firms in the two highest deciles of common ownership whereas between 2006 and 2015 the same number rose to 39%.

Because our analysis does not capture merger-related efficiencies which may lower production cost or increase quality the trend we document does not necessarily a harm to competition or consumers. However, the concentration of M&A activity between firms that overlap in their product characteristics and their ownership warrants further investigation of the welfare impact of mergers.
B. Distributional Effects of Mergers

We now turn to analyzing the distributional effects of mergers under different assumptions of firm governance. In each year, we simulate all of the mergers that are announced the following year. We estimate the counterfactual scenario of what the firm profits, consumer surplus and total surplus would be if all the mergers that are announced in the following year were already consummated this year. Thus, rather than having two merging firms operate separately and compete with each other (and all other firms) for another year we simulate what outcomes would obtain if the two firms already merged and coordinated their quantity decisions this year. Critically, we do so for two different assumptions of firm behavior: standard Cournot competition and Cournot competition with common ownership.

Figure 2 reports the effect of mergers on firm profits under standard Cournot competition (black bars) and Cournot competition with common ownership (gray bars). Under the assumption of standard Cournot competition, mergers raise total firm profits by between 0.17% to 0.58%. However, the profit-increasing effect of mergers is substantially smaller if firms are assumed to internalize the common ownership concerns of their shareholders. Mergers raise aggregate profits by between 0.06% and 0.51% under this scenario. The reduction in the profit-enhancing effect of mergers due to common ownership is particularly pronounced in the later part of our sample in which the profit increase from mergers under common ownership is only about 40% the effect under standard Cournot competition. This is because mergers increasingly occur between firms that share a large proportion of common owners and thus already internalize the profit impact on each other even before the merger. Common ownership acts like a partial merger between firms and thus mergers have less of a profit impact. Although common ownership on its own is beneficial for profits, it dampens the profit increases resulting from mergers.

The reverse picture emerges from Figure 3 which reports the effect of mergers on consumer surplus. In a given year mergers...
reduce consumer surplus by between 0.06% and 0.18% under standard Cournot and by between 0.05% and 0.16% under Cournot with common ownership. This reduction in consumer surplus occurs even though mergers raise profits which are redistributed to the representative agent thus allowing her to purchase and consume more goods. Although the presence of common ownership concerns reduces the magnitude of the effect of mergers on consumer surplus, this dampening effect is much less pronounced than for profits. The reduction in consumer surplus from mergers under common ownership is essentially the same as the harm under standard Cournot competition in 1996 and slightly over 70% in 2015.

Although mergers substantially increase profits, the combined impact on total surplus is negative because of the adverse effect on consumer surplus, which constitutes a larger share of total surplus. In a given year mergers reduce total surplus by as much as 0.07% under Cournot competition and 0.06% under Cournot competition with common ownership. The cumulative dollar value for the time period from 2006 to 2015 amounts to $64 billion and $44 billion under the two competition scenarios. Thus, even in the presence of high and rising common ownership the estimated welfare loss resulting from mergers remains substantial.

IV. Conclusion

We document that mergers of US public corporations have become increasingly concentrated among firm pairs with a high degree of product market interaction and a moderate-to-high degree of common ownership. Under shareholder value maximization rising common ownership may have mitigated some (but far from all) of the anti-competitive effects of mergers on consumer surplus.

REFERENCES

