Innovation: The Bright Side of Common Ownership?

Miguel Antón† Florian Ederer‡ Mireia Giné§ Martin Schmalz¶

December 26, 2023

Abstract

Firms have inefficiently low incentives to innovate when other firms benefit from their inventions and the innovating firm therefore does not capture the full surplus of its innovations. We show that common ownership of firms mitigates this impediment to corporate innovation. By contrast, without technological spillovers, innovation has the effect of stealing market share from rivals; in that case, more common ownership reduces innovation. Empirically, the association between common ownership and innovation inputs and outputs decreases with product market proximity and increases with technology proximity. The sign and magnitude of the overall relationship between common ownership and corporate innovation thus varies considerably across the universe of firms depending on their relative proximity in technology and product market space. These results persist if we use only variation from BlackRock’s acquisition of BGI. Our results inform the debate about the welfare effects of increasing common ownership among U.S. corporations.

JEL Codes: O31, L20, L40

*We are grateful to Daron Acemoglu, Nick Bloom, Harald Hau, Barry Nalebuff, Luke Taylor, Raffaella Sadun, Regina Seibel, Fiona Scott Morton, John Van Reenen, and seminar audiences at Berlin HSG, Humboldt University, NBER PIE, IESE, MadBar Workshop, Michigan, and Yale for helpful comments. We thank Nick Bloom, John Van Reenen, and, in particular, Brian Lucking for generously sharing their data and Pedro Martínez Bruera for outstanding research assistance. Antón acknowledges the financial support of the Department of Economy and Knowledge of the Generalitat de Catalunya (Ref. 2014 SGR 1496), and of the Ministry of Science, Innovation, and Universities (Ref. PGC2018-097335-A-I00). Schmalz acknowledges funding from Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy EXC 2126/1390838866.

†IESE Business School, manton@iese.edu
‡Boston University, CEPR, ECGI, and NBER, ederer@bu.edu
§IESE Business School, CEPR, ECGI, and WRDS, mgine@iese.edu
¶University of Oxford Saïd Business School, CEPR, ECGI, CESifo, and C-SEB, martin.schmalz@sbs.ox.ac.uk
1 Introduction

Two secular trends have recently led to a spirited discussion among academics and policy makers regarding the competitiveness of the U.S. economy. First, increasing levels of product market concentration, as measured at the national industry level, have been accompanied by increasing profitability, a decline of the labor share of income, rising inequality, declining business dynamism, and, perhaps most importantly, declining innovation.\(^1\) Second, in addition to rising product market concentration and declining innovation, common ownership has also increased: firms are increasingly commonly owned by a decreasing number of institutional investors.\(^2\) For example, Softbank’s Vision Fund recently attracted the attention of a number of competition authorities by acquiring large stakes in rivals in the ride-hailing industry and exerting its influence to effectuate a lessening of competition in an alleged attempt to “dominate ride-hailing” (The Economist, 2018). As a result, competition authorities have begun investigations to study the competitive effects of common ownership of industry competitors by mutual funds, hedge funds, and other types of investment vehicles (e.g., Berkshire Hathaway) that pool resources from a large number of investors but concentrate control over portfolio firms in a few asset management firms.\(^3\) Although much attention has focused on the empirical investigation of anticompetitive effects of common ownership, much less work has been devoted to its procompetitive and potentially welfare-enhancing role.

In this paper we investigate, both theoretically and empirically, how corporate innovation depends common ownership. In our model, the sign and the magnitude of the common ownership effect on corporate innovation vary with the relative importance of technological spillovers and business stealing repercussions of innovative activity. We show empirically that the sign and magnitude of the relationship between common ownership and innovation varies considerably

\(^1\)White House CEA (2016) provides an early overview of these trends. See Philippon and Gutiérrez (2017), Gutiérrez and Philippon (2017), De Loecker et al. (2020), and Akcigit and Ates (2021) for a formal quantification and analysis of their macroeconomic implications.

\(^2\)Backus et al. (2021); Amel-Zadeh et al. (2022) provide a recent comprehensive analysis of common ownership of the largest U.S. corporations. See Davis (2008); Harford et al. (2011); Azar (2012) for an earlier documentation of this trend and Schmalz (2018, 2021) for reviews of the theoretical and empirical literature on common ownership.

\(^3\)Mentions of the concerns and investigations by competition authorities and international institutions include, among many others, OECD (2017), European Competition Commission (2017), Federal Trade Commission (2018), Vestager (2018), and PTI (2020).
across the universe of publicly listed U.S. corporations, in line with the theory’s predictions. These findings inform a debate about the welfare effects of common ownership.

We begin our analysis by introducing common ownership in a canonical model of (process) innovation and strategic competition with both technology and product market spillovers between firms. Our model allows for product differentiation, technology spillovers, and common ownership to vary across all firm pairs. This permits us to study common ownership links between firms across the entire economy rather than just in a single industry. In the presence of technological spillovers, innovation in one firm not only generates benefits in the firm that produced the innovation but also in technologically related firms. This surplus appropriability problem leads to inefficiently low ex-ante incentives to innovate (Bolton and Harris, 1999; Jones and Williams, 2000; Arora et al., 2021). Common ownership of technologically related firms mitigates this problem to the extent that firms act in the interest of these common owners. Common ownership can even render innovative activity profitable that would be unprofitable if it only benefited the innovating firm itself. Prior literature has suggested such beneficial knowledge transfers predominantly in the context of private firms (Lindsey, 2008; Eldar et al., 2020; González-Uribe, 2020) or among investors (Stein, 2008; Botelho, 2018), whereas we focus on the corporate innovation activities of the universe of U.S. public firms.

However, there is a second dimension affecting the firm’s innovation decisions: the interaction between innovation and product market competition. Innovations resulting from R&D expenditures naturally lead to the innovator stealing market share and profits from firms competing in the same or related product markets (Bloom et al., 2013). When the competitors are predominantly owned by separate groups of shareholders, this procompetitive effect of innovation is desirable for the innovating company’s shareholders. But when the same shareholders own both the innovator and its product market competitors, such business stealing is less desirable. Hence, common ownership can reduce the incentives to innovate when the business stealing effect is stronger than the aforementioned technological spillover effect. Our theoretical framework combines both of

4We abstract away from the potential role of common *debtholders* in inducing reduced competition, which is the focus of empirical work by Saidi and Streitz (2021).

5Consistent with this idea, González-Uribe (2020) shows that technological spillovers among companies sharing common VCs are more substantial between portfolio companies that are not in direct competition for the VCs’ resources because different funds finance them.
these effects and provides conditions that determine which one of them dominates.

<table>
<thead>
<tr>
<th>IBM</th>
<th>[%]</th>
<th>Intel</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkshire Hathaway</td>
<td>8.35</td>
<td>BlackRock</td>
<td>6.14</td>
</tr>
<tr>
<td>Vanguard</td>
<td>6.06</td>
<td>Vanguard</td>
<td>6.00</td>
</tr>
<tr>
<td>State Street</td>
<td>5.12</td>
<td>Capital Research</td>
<td>5.56</td>
</tr>
<tr>
<td>BlackRock</td>
<td>5.06</td>
<td>State Street</td>
<td>3.98</td>
</tr>
<tr>
<td>State Farm</td>
<td>1.72</td>
<td>Wellington</td>
<td>2.18</td>
</tr>
<tr>
<td>BNY Mellon</td>
<td>1.46</td>
<td>Northern Trust</td>
<td>1.26</td>
</tr>
<tr>
<td>Fidelity</td>
<td>1.29</td>
<td>UBS</td>
<td>1.10</td>
</tr>
<tr>
<td>Northern Trust</td>
<td>1.14</td>
<td>Harris Associates</td>
<td>1.09</td>
</tr>
<tr>
<td>Norges Bank</td>
<td>0.94</td>
<td>BNY Mellon</td>
<td>1.01</td>
</tr>
<tr>
<td>Geode Capital</td>
<td>0.75</td>
<td>Norges Bank</td>
<td>0.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motorola Solutions</th>
<th>[%]</th>
<th>Apple</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ValueAct</td>
<td>10.11</td>
<td>Vanguard</td>
<td>5.79</td>
</tr>
<tr>
<td>BlackRock</td>
<td>8.67</td>
<td>BlackRock</td>
<td>5.65</td>
</tr>
<tr>
<td>Capital Research</td>
<td>7.93</td>
<td>State Street</td>
<td>3.90</td>
</tr>
<tr>
<td>Orbis</td>
<td>7.61</td>
<td>Fidelity</td>
<td>2.79</td>
</tr>
<tr>
<td>Vanguard</td>
<td>5.31</td>
<td>Northern Trust</td>
<td>1.27</td>
</tr>
<tr>
<td>Parnassus Investments</td>
<td>4.97</td>
<td>BNY Mellon</td>
<td>1.22</td>
</tr>
<tr>
<td>State Street</td>
<td>3.83</td>
<td>T. Rowe Price</td>
<td>0.90</td>
</tr>
<tr>
<td>Metropolitan West</td>
<td>2.26</td>
<td>Norges Bank</td>
<td>0.86</td>
</tr>
<tr>
<td>Janus Capital</td>
<td>2.09</td>
<td>Invesco</td>
<td>0.85</td>
</tr>
<tr>
<td>Neuberger Berman</td>
<td>2.06</td>
<td>J.P. Morgan</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Table 1. Ownership holdings and technology & product market correlations of four high technology firms.
The table presents the ten largest owners and their ownership holdings in 2015 of the four technology companies (IBM, Intel, Motorola, and Apple) discussed in the text. The arrows between each of the company pairs depict the technology (black) and product market (red) correlations reported in Bloom et al. (2013).

Including both dimensions is of first-order importance for understanding the overall effect of common ownership on innovation not just in the theory but also in our empirical implementation. To illustrate, Table 1 reports the ownership shares of four technology firms (IBM, Intel, Motorola, and Apple) that are technologically related but compete to a varying extent in the same product markets. First, the four companies are closely technologically related over the sample period. The technological proximity, as measured by firms’ patent issuances across different patent classes in Bloom et al. (2013), between IBM-Intel, IBM-Motorola, and IBM-Apple are 0.76, 0.46, and 0.64, respectively—much larger than the sample average of 0.038. Product market proximity, as
measured by firms’ sales shares in different industries in Bloom et al. (2013), is more heterogeneous across these firm pairs. Whereas IBM is close to Apple in product market space (product market proximity of 0.65, compared to the sample average of 0.015), IBM is not close to Intel and Motorola (product market proximity of 0.01).

As shown in Table 1, these four firms also have a significant degree of common ownership, particularly toward the end of our sample period in 2015. BlackRock, Vanguard, and State Street are all represented among the top owners of each of the four companies. However, the large concentrated blockholdings by Berkshire Hathaway and ValueAct illustrate that common ownership interests are heterogeneous and asymmetric across firms. Therefore, the degree of common ownership between firms may differentially affect their innovation decisions as a function of the firms’ technological and product market proximity. Our central theoretical prediction is that the effect of common ownership on innovation depends on firms’ relative proximity in technology and product market space and can vary both in terms of sign and magnitude.

Whether the theoretical predictions about the relationship between common ownership and innovation are helpful in organizing the data is a question that requires more than just anecdotal evidence. We find first suggestive evidence in panel regressions that both effects exist with the predicted sign, and that they lead to substantial heterogeneity of the relationship between common ownership and innovation across firms. We also find limited evidence from a quasi-natural experiment that the uncovered correlations may have a causal interpretation. Specifically, we use the methodology pioneered by Bloom et al. (2013), Hoberg and Phillips (2016), and Lucking et al. (2019) to measure technology and product market spillovers. We combine these data with information about the ownership of firms, in particular to which extent the largest owners of one firm also hold shares in other firms using the “kappa” measure advocated by Backus et al. (2021). Using panel regressions we find an ambiguous relationship on average between common ownership and corporate innovation as measured by innovation inputs (scaled R&D expenditures) and innovation outputs (citation-weighted number of patents and total stock market value of patents). However, throughout all of our specifications, innovation is more positively related to common ownership when technological proximity is higher, whereas more common ownership is associated with less innovation when product market proximity is greater. As a result—and as predicted by
our theory—common ownership and corporate innovation are positively related when technology proximity spillovers are large relative to product market business stealing incentives and are negatively related otherwise. However, the relationship between common ownership and innovation varies considerably across the publicly listed firms depending on the relative strength of product market and technology spillovers. Specifically, a one-standard deviation increase in common ownership is associated with a decrease in innovation for about half the firms (i.e., firms with relatively high product market spillovers to other commonly-owned firms). In contrast, for the other half of firms for which technology spillovers to other commonly-owned firms are relatively large, the same increase in common ownership is associated with an increase in innovation.

Finally, When we shock the interaction between common ownership and technological proximity using the BlackRock-BGI acquisition, we find limited evidence of a causal effect of common ownership on innovation outputs (citation-weighted patents and stock market value of patents), but not on innovation inputs, perhaps consistent with the rationale advanced in Li et al. (2021). We do not find robust causal evidence of a negative effect of common ownership between product market rivals on innovation. Overall, whether the uncovered empirical relationships have a causal interpretation, and thus whether common ownership is indeed a bright side of common ownership remains an open question. We discuss the implications of our results for antitrust and innovation policy.

Given that incentives to compete are tightly linked to incentives to innovate (D’Aspremont and Jacquemin, 1988; Hoskisson et al., 2002; Aghion et al., 2005; Bloom et al., 2013), our paper lies at the intersection of corporate innovation, corporate strategy, and corporate governance. The extant literature focuses on the potential benefits of cooperative R&D, on how innovation is affected by mergers, or how it relates to institutional ownership. One of this literature’s primary objectives is to examine the underinvestment of R&D and the welfare effects of moving from a noncooperative to a cooperative regime in R&D. For example, Kamien et al. (1992) identify conditions under which a cartelized research joint venture (RJV) is optimal. Leahy and Neary (1997) show that R&D cooperation leads to more output, innovation, and welfare when spillovers are positive. We

adopt these canonical models of innovation and product market competition and re-examine their conclusions in light of the fact that firms with different names do not necessarily have disjoint sets of investors.

The most closely related paper to our own analysis is Bloom et al. (2013) who study the effect of product market and technology proximity on innovation and provide economy-wide empirical evidence for the importance of both effects, but without considering the role of common ownership. They estimate the extent of spillovers in a panel of U.S. firms from 1981 to 2001 and find that gross social returns to R&D are at least twice as high as the private returns. Their results imply that the internalization of those technological spillovers is a matter of first-order welfare importance.7 We demonstrate that common ownership can internalize product market and technology externalities between the firms and thereby significantly affect the level and heterogeneity of corporate innovation. Our paper is also related to López and Vives (2019) who theoretically study the effect of (symmetric and identical) common ownership on innovation of several symmetric industry competitors.8 In their model, all firms are symmetric, compete in the same industry, and produce undifferentiated products. Technology spillovers and common ownership shares are identical between them. In contrast, our model allows for common ownership of firms in the entire economy, including potentially in separate industries. To reflect that greater scope, we allow for product differentiation, technology spillovers, and common ownership to vary across firms. These generalizations are crucial to predict and understand the variation of the effect of common ownership on innovation found in the data.

Several recent contributions provide distinct empirical investigations of the relationship between various measures of common ownership and innovation. Our analysis differs from all of them in that it employs theoretical model that guides our empirical design and informs the interpretation of our results. Our analysis may help explain the substantial variation in the sign and magnitude of common ownership effects on innovation across these different papers. Li et

7Their approach builds on prior work by Jaffe (1988) who assigns firms to technology and product market space but does not examine the proximity between firms in both these spaces. Similarly, Branstetter and Sakakibara (2002) empirically examine the effects of technology closeness and product market overlap on patenting in Japanese research consortia. Lucking et al. (2019) extend the results of Bloom et al. (2013) to later time periods.

8Stenbacka and Van Moer (2020) theoretically study how common ownership affects the product innovation decisions under duopoly and distinguishes between input spillovers and output spillovers.
al. (2021) study common venture capital ownership of pharmaceutical startups and find evidence suggesting that common ownership improves innovation efficiency. In contrast to their work, we focus on a broad sample of public firms. He and Huang (2017) examine the question of whether common blockholders have an effect on corporate innovation on average. In contrast, we study the entire institutional ownership structure of the firm and examine whether the degree of technology proximity and product market proximity differentially affect the relationship between common ownership and innovation. Kostovetsky and Manconi (2020) show that increases in shared institutional ownership caused by index additions are followed by more citations of the patents of the firm that was added to the index. Borochin et al. (2020) provide evidence that the sign of the relationship between patent output, non-self citations, and common ownership depends on the type of institutional owner creating the common ownership link. Chiao et al. (2020) argue that common ownership (as measured by industry-level MHHID in a sample ending in 2008) is on average negatively related to patent grants, citations, and R&D expenditures. They also find that common ownership is negatively associated with the likelihood that firms are involved in patent litigation and positively related to the speed of the settlement of lawsuits between commonly owned firms. The empirical evidence of Geng et al. (2016) suggests that common ownership can mitigate hold-up problems between firms owning complementary patent portfolios. However, the strength of the effect depends on the type of institutional owner. Finally, using a pan-European sample, Gibbon and Schain (2021) find that common ownership (as measured by MHHI delta calculated at the three-digit industry and country level) is related to citation-weighted patents in high technology industries, whereas common ownership is related to markups in low technology industries. One limitation of our paper remains that we are unable to address asymmetries in innovation spillovers as in Knott et al. (2009) because our innovation spillover measures are, by construction, symmetric.

The remainder of this paper is organized as follows. Section 2 presents the theoretical framework that guides the empirical analysis. Section 3 describes the data. The empirical results are presented and discussed in Section 4. Section 5 concludes.
2 Theoretical Framework

2.1 Setup

We analyze the role of common ownership and its interplay with product market and technological proximity in the canonical model of innovation and product market competition pioneered by D’Aspremont and Jacquemin (1988). We use the terms proximity and spillover interchangeably, but prefer proximity. This is to acknowledge that the proximity measure really proxies for the potential for actual spillovers rather than realized spillovers. By doing so, we also extend the model of Bloom et al. (2013), which studies the effect of product market and technology spillovers on innovation, to allow for overlapping ownership between firms. Our theoretical setup is also related to the model of López and Vives (2019) which studies the interplay between innovation and common ownership, but we allow for both product market and technology spillovers as well as common ownership weights to differ across firms.

Firms’ innovation choices, product quantities, prices, and profits are endogenously co-determined by the degree of common ownership as well as product market and technological spillovers. In line with the existing literature on common ownership, we assume that ownership is exogenous.

2.1.1 Product Market Competition

Consider an economy with \(n \) firms that each produce a single differentiated product. There are no industries per se, but all firms compete with each other depending on how closely related their products are. In our model, the welfare-enhancing effects of common ownership are due to economy-wide horizontal and vertical externalities that arise from technology spillovers. Although strictly speaking we present a partial equilibrium model, all of our insights regarding the impact of common ownership under different technology and product market spillovers also hold in a general equilibrium model.\(^9\)

Following Singh and Vives (1984) and Häckner (2000), we derive demand from the behavior

\(^9\)For example, Pellegrino (2019) and Ederer and Pellegrino (2021) model and estimate a general equilibrium hedonic linear demand system in which all the \(n \) firms in the economy compete with each other and the investors (or managers) controlling the firms’ operations consume an outside good (e.g., leisure).
of a representative consumer with the following quadratic utility function:

$$U(q) = A \sum_{i=1}^{n} q_i - \frac{1}{2} \left(a_{ii} \sum_{i=1}^{n} q_i^2 + 2 \sum_{i \neq j} a_{ij} q_i q_j \right)$$ \hspace{1cm} (1)$$

where \(q_i \) is the quantity of product \(i \), \(q = (q_1, ..., q_n) \) is the vector of all quantities, \(A > 0 \) represents overall product quality, \(a_{ii} > 0 \) measures the concavity of the utility function, and \(a_{ij} \) represents the degree of substitutability between two differentiated products \(i \) and \(j \). \(a_{ii} > a_{ij} \geq 0 \) ensures that the products are (imperfect) substitutes. Without loss of generality and to simplify notation, we set \(a_{ii} = 1 \). The higher the value of \(a_{ij} \), the more alike the products are. The resulting consumer maximization problem yields linear demand for each product \(i \), such that the firms face symmetric inverse demand functions given by

$$p_i(q) = A - q_i - \sum_{j \neq i} a_{ij} q_j,$$

where \(i = 1, 2, ..., n \). Because \(1 > a_{ij} \geq 0 \), a firm’s quantity \(q_i \) has a greater impact on the price \(p_i \) for its own product than the quantity of any other firm \(q_j \).\(^{10}\) The parameter \(a_{ij} \) measures product homogeneity or product market spillovers. Given the symmetry of the empirical measure of product market spillovers (Bloom et al., 2013) that we describe in Section 3, we assume that this parameter is symmetric between firm \(i \) and \(j \), \(a_{ij} = a_{ji} \). If \(a_{ij} \) is small, the products of firm \(i \) and \(j \) are quite distinct and thus expanding output \(q_i \) (or lowering price \(p_i \)) does not steal much market share from the competing firm \(j \). On the other hand, if \(a_{ij} \) is large the product varieties produced by the firms are quite similar and thus business stealing is more pronounced.

2.1.2 Innovation

Following the extant theoretical literature on innovation (D’Aspremont and Jacquemin, 1988; Kamien et al., 1992; Leahy and Neary, 1997; López and Vives, 2019) we model corporate innovation as decreasing marginal cost. This is just a particular modeling choice that ensures tractability.\(^{10}\) In the main part of the paper we focus on the Cournot competition case where quantity choices are strategic substitutes. However, our results for Bertrand competition (see Appendix) where prices are strategic complements are essentially identical. Although we assume linear demands, the main results of our model generalize to nonlinear demand functions.
One could also model innovation as increasing product quality which would yield qualitatively similar results. As in much of the existing innovation literature we only focus on the intensity of innovation, but do not consider the direction of innovation which is the focus of Letina (2016), Bryan and Lemus (2017), and Callander and Matouschek (2020). Common ownership may also influence which innovation projects firms choose to pursue.

Firm i has a marginal cost of c_i given by

$$c_i = \bar{c} - x_i - \sum_{j \neq i}^n \beta_{ij} x_j.$$ \hspace{1cm} (3)

Firm i can lower its marginal cost from \bar{c} by investing in innovation x_i at a cost $\frac{\gamma}{2} x_i^2$. A firm’s marginal costs are also reduced by the innovative investments of other firms x_j, to the extent that these investments benefit firm i because of technological spillovers captured by $0 \leq \beta_{ij} < 1$. This means that a firm i’s investment in innovation reduces its own marginal cost c_i and to a lesser extent may also reduce the marginal cost c_j of firm j. Given the construction of the empirical measure of technological spillovers (Bloom et al., 2013) we assume that this parameter is symmetric, $\beta_{ij} = \beta_{ji}$. These technological spillovers are not confined within the same industry or even just to firms that produce relatively similar substitute products. Innovation benefits can spill over to technologically related firms (i.e., $\beta_{ij} > 0$) that produce goods that are entirely unrelated in terms of product market competition (i.e., $a_{ij} = 0$). The example mentioned in the introduction of IBM and its relationship to Intel and Motorola, which are close in technology space but not in product market space, fits this case quite well.

The profits of firm i are given by

$$\pi_i = q_i \left[A - q_i - \sum_{j \neq i}^n a_{ij} q_j - \left(\bar{c} - x_i - \sum_{j \neq i}^n \beta_{ij} x_j \right) \right] - \frac{\gamma}{2} x_i^2.$$

Firms choose quantities q_i and innovation levels x_i simultaneously. We obtain qualitatively similar results when firms invest in innovation before choosing quantities (or prices).
2.1.3 Owners

There are \(n \) owners which share the same index as the \(n \) firms. Each owner \(i \) owns a stake in firm \(i \) as well as shares in other firms denoted by \(j \neq i \). We assume firms act in their largest owners’ interest. Our model nests the special case in which firms maximize their own profits.\(^{11,12}\)

Specifically, we follow the common ownership literature since Rotemberg (1984) and assume that firms maximize a weighted average of their shareholders’ portfolio profits. Azar (2012) and Backus et al. (2021) show that firm \(i \)’s maximization problem can be restated as

\[
\phi_i = \pi_i + \sum_{j \neq i} \kappa_{ij} \pi_j
\]

where \(\kappa_{ij} \) is the weight that firm \(i \) places on the profits \(\pi_j \) of firm \(j \). Its exact value depends on the type of ownership and corresponds to what Edgeworth (1881) termed the “coefficient of effective sympathy among firms.” In fact, even before the common ownership literature there is a long tradition in economics of weighting shareholder interests in the objective function of the firm, including Drèze (1974) and Grossman and Hart (1979). We assume that the profit weight \(\kappa_{ij} \) is between 0 (separate ownership) and 1 (perfectly common ownership). In contrast to \(a_{ij} \) and \(\beta_{ij} \), we do not assume that \(\kappa_{ij} \) is symmetric between any firm pair \(i \) and \(j \), that is \(\kappa_{ij} \neq \kappa_{ji} \) in general.

We use the \(\kappa \) notation of Backus et al. (2021) which is equivalent to \(\lambda \) in Azar (2012), López and Vives (2019), and Azar and Vives (2020). Values of \(\kappa \) exceeding 1 are possible, but they lead to owners placing more weight on their competitors’ profits than on their own profits. This would make it possible for common ownership to create incentives for the “tunneling” of profits from one firm to another (Johnson et al., 2000). By maximizing equation (5), the owner essentially maximizes a weighted average of her own firm as well as other firms’ profits that she owns. The particular objective function given in equation (5) is a normalization. Firms do not maximize a

\(^{11}\)Assuming shareholders agree on own-firm value maximization has no theoretical basis when firms are not price takers and shareholders have interests outside the firm Hart (1979). Furthermore, firms acting in their shareholders’ portfolio interest is also a better description of how firms behave and how managers are incentivized (Antón et al., 2023b).

\(^{12}\)Aside from a literal interpretation, this assumption can be understood as a metaphor for an explicit or implicit coalition of shareholders that jointly hold an effective majority of the voting stocks. Olson and Cook (2017) and Shekita (2022) discuss examples of explicit coalitions. Moskalev (2020) shows conditions under which shareholders with similar portfolios will optimally vote the same way, and therefore will be regarded as an implicit coalition or a single block by managers.
sum that is larger than the entire economy.

2.2 Analysis and Comparative Statics

We now analyze the differential impact that common ownership has on corporate innovation that depends on both product market and technological spillovers. Firm \(i \)'s first-order conditions with respect to quantity \(q_i \) and innovation \(x_i \) can be rearranged to yield the following best-response functions

\[
q_i = \frac{1}{2} \left[A - \left(\bar{c} - x_i - \sum_{j \neq i}^n \beta_{ij} x_j \right) - \sum_{j \neq i}^n a_{ij} q_j - \sum_{j \neq i}^n \kappa_{ij} a_{ji} q_j \right]
\]

(6)

\[
x_i = \frac{1}{\gamma} \left(q_i + \sum_{j \neq i}^n \kappa_{ij} \beta_{ji} q_j \right)
\]

(7)

where given our symmetry assumptions \(a_{ij} = a_{ji} \) and \(\beta_{ij} = \beta_{ji} \).

Firm innovation \(x_i \) is directly proportional to firm quantity \(q_i \) such that any increase in quantity \(q_i \) will also increase innovation \(x_i \). These first-order conditions illustrate the driving forces of our model. When common ownership \(\kappa_{ij} \) increases, this has two distinct effects on firm \(i \)'s first-order conditions.

First, in equation (6) an increase in \(\kappa_{ij} \) reduces \(q_i \) through the interaction of common ownership and product market spillovers (i.e., the term labeled “CO × product market spillovers”) and thereby reduces innovation \(x_i \) in equation (7). This is the anticompetitive effect of common ownership arising from product market spillovers. Effectively, increasing innovation \(x_i \) causes firm \(i \) to steal business from any firm \(j \) that is selling a substitute product. This well-known business stealing effect of innovation will be larger the greater the product homogeneity (also known as the degree of product market spillovers) \(a_{ij} \). The more closely related the products are, the larger will be the negative profit impact of an increase in quantity on other firms. Common ownership exacerbates this negative effect of product market similarity \(a_{ij} \) on output and innovation, because
common ownership weakens the firm’s business stealing incentive. The reason is that when a firm’s objective function puts positive weight \(\kappa_{ij} \) on other firms’ profits \(\pi_j \), firm \(i \) will partly internalize any negative profit repercussions on these other firms by reducing innovation \(x_i \) and quantity produced \(q_i \).

Second, in equation (7) an increase in \(\kappa_{ij} \) directly increases innovation. When firm \(i \) innovates, it benefits other firms \(j \neq i \) by lowering their marginal costs \(c_j \). This is the procompetitive effect of common ownership arising from technological spillovers (i.e., the term labeled “CO \(\times \) technology spillovers”). The greater the technological proximity \(\beta_{ij} \) between the two firms, the larger is this technology spillover effect. This is because firm \(j \) which is more closely located in technology space to firm \(i \), will benefit more from the firm \(i \)’s innovation. Common ownership strengthens this technology spillover effect because with a positive weight \(\kappa_{ij} \) in its objective function, firm \(i \) partly internalizes the positive externality of innovation on other firms \(j \neq i \) that it would otherwise ignore. This output-increasing technology spillover effect is still present when the firms have no product market connection (\(a_{ij} = 0 \)). In graphical terms, an increase in \(\kappa_{ij} \) tilts the innovation reaction function of firm \(i \) inward due to the product market spillovers operating through \(a_{ji} \), but shifts it outward due to the technology spillovers operating through \(\beta_{ji} \).

It is immediately obvious that the effect of common ownership on innovation has an ambiguous sign: it can be either positive or negative depending on the relative strength of the product market and technology spillovers. If \(a_{ij} = 0 \) (i.e., product market spillovers are absent) any increase in common ownership \(\kappa_{ij} \) will raise firm innovation \(x_i \) due to technological spillovers \(\beta_{ij} \geq 0 \). Conversely, if \(\beta_{ij} = 0 \) (i.e., technological spillovers do not exist), any increase in \(\kappa_{ij} \) will decrease firm innovation \(x_i \) due to product market spillovers \(a_{ij} \geq 0 \).

We can rewrite the system of first order conditions given in equations (6) and (7) in the following way

\[
(a + K \circ a') q = (A - \bar{c}) \cdot 1 + B x
\]

\[
(K \circ B') q = \gamma x
\]

where \(\circ \) is the Hadamard (element-by-element) product, \(1 \) is an \(n \times 1 \) vector of ones, \(a \) is the
product similarity matrix, \(B \) is the technology spillover matrix, and \(K \) is the common ownership matrix. The matrices \(a \), \(B \), and \(K \) are defined as follows:

\[
a = \begin{bmatrix}
1 & a_{12} & \cdots & a_{1n} \\
a_{21} & 1 & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & 1
\end{bmatrix}, \quad B = \begin{bmatrix}
1 & \beta_{12} & \cdots & \beta_{1n} \\
\beta_{21} & 1 & \cdots & \beta_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{n1} & \beta_{n2} & \cdots & 1
\end{bmatrix}, \quad K = \begin{bmatrix}
1 & \kappa_{12} & \cdots & \kappa_{1n} \\
\kappa_{21} & 1 & \cdots & \kappa_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\kappa_{n1} & \kappa_{n2} & \cdots & 1
\end{bmatrix}
\]

Defining \(K_a = a + K \circ a' \) and \(K_\beta = K \circ B' \) and substituting the second system of first-order conditions into the first system yields the vector of equilibrium innovation choices \(x^* \) given by

\[
x^* = \begin{bmatrix}
x_1^* \\
x_2^* \\
\vdots \\
x_n^*
\end{bmatrix} = (A - \bar{c}) \left[\gamma K_a K_\beta^{-1} - B \right]^{-1} \cdot 1 \tag{8}
\]

where \(1 \) is an \(n \times 1 \) vector of ones.

Proposition 1. Common ownership \(\kappa_{ij} \) increases equilibrium firm innovation \(x_i^* \) if and only if technological spillovers \(\beta_{ij} \) are sufficiently large relative to product market spillovers \(a_{ij} \). The effect of \(\kappa_{ij} \) on \(x_i^* \) is decreasing in \(a_{ij} \), \(\frac{\partial x_i^*}{\partial a_{ij}} < 0 \), and increasing in \(\beta_{ij} \), \(\frac{\partial x_i^*}{\partial \beta_{ij}} > 0 \).

Proposition 1 shows that without knowledge of product differentiation and technological characteristics common ownership has an ambiguous effect on innovation. This insight may help explain some of the variation in empirical findings to date on the relation between common ownership and corporate innovation (Kostovetsky and Manconi, 2020; Borochin et al., 2020; Chiao et al., 2020). These empirical designs do not make the distinctions that our theoretical framework predicts to be crucial for determining the sign of the effect of common ownership on innovation. Depending on the relative strengths of (i) the business stealing and (ii) the technology spillover effect, common ownership can either decrease or increase corporate innovation. However, our framework also predicts under what conditions common ownership has a negative or a positive effect on innovation. Common ownership should decrease innovation if \(a_{ij} \) is sufficiently large rel-
ative to β_{ij}, whereas common ownership should increase innovation if the opposite is the case. In other words, we expect common ownership to decrease (increase) innovation when product market spillovers are sufficiently large (small) and technology spillovers are sufficiently small (large).\footnote{In Section 4.5 we argue that for these effects to be present common owners need not actively engage in corporate governance activities.}

In our empirical implementation we follow Bloom et al. (2013) and construct measures of firm-specific product market spillovers for $\sum_{j \neq i} a_{ji} q_j$ and of firm-specific technological spillovers for $\sum_{j \neq i} \beta_{ji} q_j$ which we interact with the firm-specific common ownership measure of κ_{ij} to estimate the pro- and anticompetitive effects of common ownership due to product market and technology spillovers highlighted in the first-order conditions (6) and (7).\footnote{Bloom et al. (2013) provide microeconomic foundations for the spillover measures we use. However, neither they nor we address the “reflection problem” pointed out by Acemoglu (2014).}

Importantly, once we control for the relative strength of product market and technology spillovers, the sign of the effect of common ownership on innovation is unambiguous and does not depend on whether firms compete in strategic substitutes or strategic complements. This is in contrast to the analysis in Bloom et al. (2013) where many of the predictions depend on the form of strategic competition. The reason for this difference is that common ownership has a “direct effect” (i.e., directly affecting the objective function) rather than a “strategic effect” (i.e., indirectly affecting it through the effect on decisions of other firms) as defined by Fudenberg and Tirole (1984). Hence, the sign of the common ownership effect on innovation does not depend on the sign of the strategic response of other firms.

Our predictions provide theoretical guidance for our empirical analysis. Specifically, they allow us to quantify whether and under what conditions common ownership should increase or decrease innovation and how product market and technology spillovers should affect this relationship.

3 Data

In this section we investigate the empirical relationship between common ownership, product market competition, and innovation. Specifically, we are interested in how innovation inputs (e.g., R&D expenditures) and outputs (e.g., citation-weighted value of patents and stock market value of patents) depend on the extent to which a firm is controlled by shareholders that have significant
stakes in related firms and on the extent to which the innovation spills over to neighboring firms in the product market and technology space. As in our theoretical framework we study the economy-wide implications of common ownership and do not restrict ourselves to the study of any particular single industry. Unless otherwise stated, all of the data used for our estimations are from 1985 to 2015. Table 2 provides an overview of our summary statistics for the key variables.

3.1 Measures of Innovation

To proxy for a firm’s innovation x_i in our theoretical model, we construct empirical innovation measures, denoted by $INNOVATION_{it}$, based on firm-level patent grants and citations from the database built by Kogan et al. (2017). This database has additions and corrections to the NBER patent data built by Hall et al. (2001) from the official records of the United States Patent and Trademark Office (USPTO).

To measure innovation inputs, we use $\ln(1 + R_{it}/SALES_{it})$ where R_{it} is the level of inflation-adjusted R&D expenditures and $SALES_{it}$ are the total sales of firm i in year t as reported in Compustat. Since many firms report zero values for R&D expenditures in most years, we follow the standard in the literature and replaced missing R&D values with zeros, and included a dummy if R&D is zero (in the R&D regression), and a dummy if the stock of R&D is zero (in the TCW and TSM) regressions following Koh and Reeb (2015).

To measure innovation outputs, we rely on two different measures that capture the scientific and economic value of innovation respectively. First, we use the number of citation-weighted patents TCW_{it} given by

$$TCW_{it} = \sum_{j \in P_{it}} \left(1 + \frac{C_j}{\bar{C}_j}\right)$$

(9)

where P_{it} denotes the set of patents issued to firm i in year t, C_j is the number of forward citations to patent j, and \bar{C}_j is the mean number of citations to patents granted in the same year as patent

15 The database is available on Noah Stoffmans website (http://kelley.iu.edu/nstoffma). More details on how to match patents and citations to the CRSP database can be found in the online appendix of Kogan et al. (2017). We should acknowledge that using these measures have some limitations, as pointed out by Kulrn et al. (2020), who conclude that after 2005, patent attorneys started adding hundreds of citations where they would not have previously.
Table 2. Summary Statistics for Key Variables.

The innovation literature has argued that forward patent citations are a good indicator of the quality of the innovation and its scientific value (Hall et al., 2001).

Second, we measure the private economic value of innovation (Hall et al., 2005; Kogan et al., 2017) as proxied by stock market reactions following a patent issuance. Specifically, we use the measure of Kogan et al. (2017) which estimates a firm i’s stock market reaction ξ_j during the three-day announcement window following the issuance of the firm’s patent j. Kogan et al. (2017) then sum up all the estimated values ξ_j of patents j that were granted to firm i in year t to construct the total stock market value of innovation TSM_{it} generated by firm i in year t:

$$TSM_{it} = \sum_{j \in P_{it}} \xi_j.$$ \hspace{1cm} (10)

These two innovation outputs (forward patent citations and stock market value of patents) likely measure different aspects of quality. Whereas patent citations are more reflective of the
scientific value of the innovation, the total stock market value measures the private economic value that is fully appropriated by the firm. For example, a patent may constitute only a minor scientific progress (and therefore generate few patent citations), but it may be particularly successful at limiting competition thereby generating significant profits for the issuing firm.

3.2 Measures of Common Ownership

To construct the ownership variables, we use two sources of data: Thomson Reuters (institutional ownership in 13F) and Schwartz-Ziv and Volkova (2023) (blockholdings in 13D and 13G). The Thomson Reuters 13Fs are taken from SEC regulatory filings by institutions with at least $100 million total assets under management. We augment this data by scraping SEC 13F filings following Ben-David et al. (2020) which resolves the issues of stale and omitted institutional reports, excluded securities, and missing holdings from 2000 onwards.

We complement these institutional ownership data with blockholdings data from Schwartz-Ziv and Volkova (2023) because there are large, influential blockholders in many publicly-listed U.S. firms. The presence of such blockholders might be correlated with ownership by 13F institutional investors in a systematic way, and also correlate with our outcome measures. For example, some 13F institutions might have a preference for or against firms with family blockholders, which may systematically differ in their approach to governance. Thus, incorporating both institutional and non-institutional blockholders is important for the measurement of common ownership. We describe the precise construction of the common ownership variables from these data in the following section.

A limitation implied by this data source is that we do not observe the holdings of individual owners unless they are employed as officers of the company or serve on its board, in which case we complement these data with Execucomp. We assume that the remaining individual stakes of outsiders are relatively small and that in most cases they do not directly exert a significant influence on firm management. The arising inaccuracies introduce measurement error and an attenuation bias toward zero in our regressions.

To identify how common ownership influences the relationship between product market competition, technology spillovers, and innovation, we require a measure of common ownership. The
existing literature provides several candidate measures of common ownership, the first of which is closely linked to the theoretical literature on common ownership, including our own model.

From equation (5), recall that the objective function of firm i is given by

$$
\phi_i = \pi_i + \sum_{j \neq i} \kappa_{ij} \pi_j
$$

where κ_{ij} is the weight that firm i places on firm j’s profits, π_j. The weighted sum of these profit weights κ_{ij} across all the potential product market competitors of firm i is the principal object of interest in the common ownership hypothesis (Backus et al., 2021). Our main measure of common ownership is κ_{ij} between any firm pair i and j across the entire economy. We refer to the equal- or value-weighted average of the weights that the owners of firm i place in year t on the profits of the $n - 1$ other firms in the economy as π_{it} or simply “kappa.” More formally,

$$
\pi_{it} = \frac{1}{n - 1} \sum_{j \neq i} \kappa_{ij,t} \
$$

where the weighting ω_{jt} is the stock market value of firm j in year t. As in our theoretical model we exclude from our empirical analysis the small fraction of observations where π_{it} exceeds 1 because these observations are indicative of incorrect or missing ownership data (Backus et al., 2021). Our results are essentially unchanged if we include these observations.

3.3 Measures of Technological and Product Market Proximity

For our analysis we require two distinct measures of technological proximity and product market proximity between firms. For technological proximity we follow Bloom et al. (2013) and Lucking et al. (2019) and use the overlap in patents between each pair of firms in particular technology classes denoted by $TECH_{ij}$. $TECH_{ij}$ empirically proxies the degree of technological spillovers β_{ij}. For product market proximity we rely on the product cosine similarity measure of Hoberg and Phillips (2016) which is based on product descriptions in the Business Description section of 10-K statements. These pairwise cosine similarities which we denote by HP_{ij}, proxy for the degree of product market spillovers a_{ij} between a pair of firms in our model. We briefly
explain the specific construction of these measures below. For a thorough discussion including microeconomic foundations see Bloom et al. (2013) and Hoberg and Phillips (2016). Following Bloom et al. (2013) we construct the $TECH_{ij}$ measure using both the Jaffe and the Mahalanobis proximity. The HP_{ij} measure is only available as a cosine similarity.

Denote the vector of the share of patents of firm i in any given technology class by T_i. $TECH_{ij}$ is the uncentered correlation between all firm i,j pairings and closely corresponds to the β_{ij} parameter in our model. Following Jaffe (1988), this measure is defined as

$$TECH_{ij} = \frac{T_iT_j'}{(T_iT_i')^{1/2}(T_jT_j')^{1/2}}.$$ (12)

To avoid a look ahead bias we need to ensure that a patent granted after year t is not used in a regression before t. We therefore compute a $TECH_{ij}$ matrix for each year, using patent data only up to that year. However, our results continue to hold when we compute the $TECH_{ij}$ matrix using patents from all years.

Importantly, we compute each $TECH_{ij}$ measure by allowing patents with multiple classifications. Instead of only using the first classifications, we use all classifications to better reflect the uses of the patents. The data source on patents from Kogan et al. (2017) which classifies them according to the Cooperative Patent Classification (CPC)16 does not give more weight to one class than another for a given patent. Hence, we use them equally. If patent A is categorized in two classes (e.g., class B1 and B2), we count for that company one patent in class B1 and one patent in class B2. Using multiple classifications in our analysis is important because 50% of the patents have at least 3 classifications and 25% have more than 6.17

To build each $TECH_{ij}$ measure we use the Section/Class/Subclass/Group, but we do not use information on Subgroup. This provides sufficient detail for each patent and also avoids having very little overlap between patents of different companies which would result in a $TECH_{ij}$ matrix full of zeros.

Following Bloom et al. (2013) and Lucking et al. (2019) we also construct an alternative version of $TECH_{ij}$ using the Mahalanobis proximity metric which we denote by $TECH_{ij}^M$. This

16See https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html for more explanation.
17Our results also hold when we only use the first classification of the patent as we show in Appendix Table B5.
measure allows for spillovers between different technology classes. In contrast, such spillovers across technology classes are ruled out by the Jaffe metric which assumes full spillovers within the same class or industry and no spillovers otherwise. Complete detail on the definition and construction of the Mahalanobis measures is included in the online appendices of Bloom et al. (2013) and Lucking et al. (2019).

The Mahalanobis $TECH_{ij}^{M}$ measure quantifies spillovers across technology class by using revealed preference. If two technologies are often located together in the same firm (for example, ‘computer input/output’ and ‘computer processing’), then proximity will be greater. The share of times the two technology classes are patented within the same firm proxies for this proximity.

We then construct the pool of technology spillovers for firm i in year t, $SPILLTECH_{it}$ as follows

$$SPILLTECH_{it} = \sum_{j \neq i} TECH_{ij} G_{jt}$$

where G_{jt} is the weighted stock of R&D of firm j given by

$$G_{jt} = 0.85G_{jt-1} + RRD_{jt}$$

where RRD_{jt} are real R&D expenditures adjusted for inflation.

The $SPILLHP_{ij}$ measure comes from Hoberg and Phillips (2016) and is the cosine similarity of the words contained in the Business Description section of 10-K statements. Hoberg and Phillips (2016) build a vocabulary of 61,146 words that firms use to describe the characteristics of their products. Based on this vocabulary they produce for each firm i a vector of word frequencies where each entry of the vector corresponds to the number of times a word appears in firm i’s product description. $SPILLHP_{ij}$ is the cosine similarity between firm i and j and ranges between 0 (no overlap in word frequencies) and 1 (perfect overlap). Hoberg and Phillips (2016) show that these cosine similarity correctly identify industry groupings and predict competitive relationships between firms much better than other industry classifications. A demand model based on these cosine similarities also generates substitution patterns that closely fit those obtained from industrial organization studies (Pellegrino, 2019).

Analogously to our technology spillover measures, we construct the pool of product market
spillovers for firm i in year t, SPILLHP_{it} as follows

$$\text{SPILLHP}_{it} = \sum_{j \neq i} \text{HP}_{ij} G_{jt}. \quad (15)$$

To measure the interaction of common ownership with technology and product market spillovers we construct two additional measures, COSPILLTECH_{it} and COSPILLHP_{it} which are defined as follows

$$\text{COSPILLTECH}_{it} = \sum_{j \neq i} \kappa_{ij} \text{TECH}_{ij} G_j \quad (16)$$

$$\text{COSPILLHP}_{it} = \sum_{j \neq i} \kappa_{ij} \text{HP}_{ij} G_j \quad (17)$$

As is obvious from these definitions, the interaction terms are constructed at the pair level and correspond to the terms $\sum_{j \neq i} \kappa_{ij} \beta_{ij}$ and $\sum_{j \neq i} \kappa_{ij} a_{ij}$ in our theoretical model.

3.4 Other Variables

Throughout our analysis we also use an additional set of control variables. First, $\ln(\text{SALES}_{it})$ is the natural logarithm of sales of the company where we adjust for inflation as in Brav et al. (2018). Second, $\ln(\text{K}_{it}/\text{L}_{it})$ is the capital-labor ratio, computed as the natural logarithm of the ratio of plant property equipment K_{it} and the number of employees L_{it} as in Aghion et al. (2013), Hall et al. (2001), and Gompers and Metrick (2001). Finally, we control for a firm’s share of all of its institutional ownership as in Aghion et al. (2013) as this could also influence corporate innovation independent of the overlapping shareholdings of institutional investors.

4 Empirical Analysis

We empirically study how corporate innovation depends on the degree to which the firms are commonly owned and how that relationship is affected by the spillovers on other firms in the technology and product market space. The theoretical model presented in Section 2 illustrates that common ownership can have a positive or a negative effect on innovation, depending on
parameters. Specifically, the model predicts that the correlation between common ownership and innovation increases with the level of technological spillovers but decreases the closer the firms are in product space.

4.1 Empirical Methodology

In our empirical analysis, we estimate for each of the three outcome variables (scaled R&D, citation-weighted patents, stock market value of patents) how innovation depends on common ownership as well as the interactions of common ownership with product market spillovers and technology spillovers, controlling for known or suspected co-determinants of innovation such the size of the firm, capital intensity, and institutional ownership (Aghion et al., 2013). Our baseline regression is

\[
INNOVATION_{it} = \alpha_1 \cdot CO_{it} + \alpha_2 \cdot COSPILLTECH_{it} + \alpha_3 \cdot COSPILLHP_{it} + \alpha_4 \cdot SPILLTECH_{it} + \alpha_5 \cdot SPILLHP_{it} + \alpha_6 \cdot X_{it} + \sum_x \xi_x \cdot \eta_x + \eta_{ijt} \]

(18)

where firms are indexed by \(i \), and years by \(t \). \(X_{it} \) is the vector of control variables \(\ln(SALES_{it}) \), \(\ln(K_{it}/L_{it}) \), and institutional ownership. \(\eta_x \) with \(x \in \{i, t\} \) are firm \(i \), and year \(t \) fixed effects. \(CO_{it} = \pi_{it} \) measures to what extent the largest and most powerful shareholders of firm \(i \) are also beneficial owners of other firms that are connected to firm \(i \). Standard errors are clustered at the firm level.

We estimate OLS regressions for scaled R&D expenditures and the stock market value of patents and negative binominal count data models for citation-weighted patents. The negative binomial regressions include a firm fixed effect that controls for the firm’s average citation-weighted patents in the pre-sample period, as in Blundell et al. (1999), Bloom et al. (2013), and Lucking et al. (2019), where the pre-sample period is defined as the five years before the firm enters the regression sample.

Recall that firms influence each other because they benefit from any innovation activities of firm \(i \) (technology spillovers) and/or because they are natural product market competitors of firm
i (product market spillovers). The principal coefficients of interest are therefore α_2 and α_3 which measure how the relationship between common ownership and innovation varies with product market and technology spillovers.

4.2 Empirical Results

We begin our analysis by examining the impact of common ownership and technology spillovers on innovation inputs (R&D expenses) as the outcome variable. Table 3 reports the results for estimation of equation (18) with the R&D to asset ratio as the dependent variable. Across the different specifications we include firm and year fixed effects, so as to difference out any otherwise omitted time trends or levels of common ownership that may correlate with trends or levels of R&D expenditures, leading to biased regression coefficients. Column 1 is similar to Lucking et al. (2019) as our baseline specification using the Jaffe proximity measures. Column 2 adds common ownership and shows that it is negatively correlated with innovation input. In column 3, we include interaction terms between common ownership and our two proximity measures. Columns 4 and 5 are similar to columns 2 and 3 but use the Mahalanobis proximity measures. We find that common ownership is generally associated with lower innovation input though insignificantly. The coefficient on institutional ownership is generally negative, unlike in (Aghion et al., 2013).

Our primary coefficients of interest, however, are those reflecting how the relation between common ownership and innovation varies with technology and product market spillovers. Columns 3 and 5 include interaction terms between common ownership and our two measures of spillovers. The estimated coefficient on the interaction term with technological spillovers $COSPILLTECH$ is positive both for the Jaffe and Mahalanobis specification, whereas the interaction between common ownership and product market spillover $COSPILLHP$ has a significantly negative coefficient. That is to say, in accordance with our theoretical analysis, the negative relation between common ownership and innovation inputs becomes more negative as the degree of product market spillovers increases. Conversely, the relationship between common ownership and innovation inputs becomes less negative and can even turn positive the larger technology spillovers are. On average, the countervailing forces of technology and product market spillovers that pull the relationship between common ownership and corporate innovation in different directions essentially cancel each other
Table 3. Asset-adjusted R&D expenditure as a function of common ownership, technology spillovers, and product market spillovers, and their interactions with common ownership. The table reports OLS coefficient estimates of equation (18) with the dependent variable \(\ln(1 + \frac{R&D}{A}) \). Standard errors are clustered at the firm level. Variable definitions are described in Section 3. Untabulated controls include firm sales, industry sales, dummy for R&D is equal zero, and capital-labor ratio in \(t-1 \).

<table>
<thead>
<tr>
<th>R&D expenditure (\ln(1 + \frac{R&D}{A}))</th>
<th>(1) Jaffe</th>
<th>(2) Jaffe</th>
<th>(3) Jaffe</th>
<th>(4) Mahal.</th>
<th>(5) Mahal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>-0.000210</td>
<td>-0.000527</td>
<td>-0.000209</td>
<td>-0.000451</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000763)</td>
<td>(0.000789)</td>
<td>(0.000763)</td>
<td>(0.000780)</td>
<td></td>
</tr>
<tr>
<td>(\ln(COSPILLTECH))</td>
<td>0.00513**</td>
<td>0.00506**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00226)</td>
<td>(0.00240)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln(COSPILLHP))</td>
<td>-0.00457**</td>
<td>-0.00459**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00222)</td>
<td>(0.00233)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln(SPILLTECH))</td>
<td>-0.00114</td>
<td>-0.00114</td>
<td>-0.00645**</td>
<td>-0.000709</td>
<td>-0.00616</td>
</tr>
<tr>
<td></td>
<td>(0.00157)</td>
<td>(0.00156)</td>
<td>(0.00300)</td>
<td>(0.00235)</td>
<td>(0.00381)</td>
</tr>
<tr>
<td>(\ln(SPILLHP))</td>
<td>0.00179</td>
<td>0.00179</td>
<td>0.00672***</td>
<td>0.00174</td>
<td>0.00674***</td>
</tr>
<tr>
<td></td>
<td>(0.00110)</td>
<td>(0.00109)</td>
<td>(0.00246)</td>
<td>(0.00110)</td>
<td>(0.00260)</td>
</tr>
<tr>
<td>Institutional Ownership</td>
<td>-0.0297***</td>
<td>-0.0300***</td>
<td>-0.0310***</td>
<td>-0.0300***</td>
<td>-0.0309***</td>
</tr>
<tr>
<td></td>
<td>(0.00404)</td>
<td>(0.00418)</td>
<td>(0.00413)</td>
<td>(0.00419)</td>
<td>(0.00414)</td>
</tr>
</tbody>
</table>

Observations: 31,538 31,538 31,169 31,538 31,186
Year FE: Yes Yes Yes Yes Yes
Firm FE: Yes Yes Yes Yes Yes

out. However, this masks the significant heterogeneity in implied coefficient estimates of the relationship between common ownership and sales-adjusted R&D expenditure. As we show below, for about half of the firms (i.e., for those with relatively high technology and low product market spillovers) the relationship is positive whereas for the other half (low technology and high product market spillovers) it is negative.

We now turn to the empirical relation between common ownership and innovation outputs. Table 4 is constructed similarly to the previous table but reports the results for the citation-weighted value of patents held by a firm using a negative binomial count data model.\(^{18}\) On average, the citation-weighted value of patents shows a statistically insignificant negative correlation with common ownership in all specifications. In other words, on average across our entire sample,

\(^{18}\)Kogan et al. (2017) argue that these two measures are essentially weighted patent counts. If firm \(f \) files no patent in year \(t \), both variables are equal to zero (see Section 3.1 of Kogan et al. (2017)). Given that those variables have many zeros, high skewness, and excess dispersion, we use a negative binomial regression model with the plain variable in the LHS, for both TCW and TSM.
common ownership and corporate innovation output as measured by citation-weighted patents are not strongly related. However, as before, this is because the interactions of common ownership with technology and product market spillovers cancel each other out in the aggregate.

In particular, once we include the interaction terms between common ownership and the two spillover measures in columns 3 and 5, as before and in accordance with our theoretical predictions, we find that when the variable that captures the pair level interaction of common ownership and product market spillovers \(\text{COSPILLHP} \) is larger, innovation output becomes more negative. It becomes positive instead when the interaction of common ownership with technology spillovers \(\text{COSPILLTECH} \) is larger. Because there is considerable heterogeneity of these spillovers across industries and firms, this leads to vastly different effects of common ownership on corporate innovation across firms. The coefficient on institutional ownership is weakly positive, qualitatively in line with the results of Aghion et al. (2013).

We illustrate the heterogeneity of the relationship between common ownership and corporate

<table>
<thead>
<tr>
<th>Citation-weighted patents</th>
<th>(1) Jaffe</th>
<th>(2) Jaffe</th>
<th>(3) Jaffe</th>
<th>(4) Mahal.</th>
<th>(5) Mahal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(TCW_{it})</td>
<td>0.00638</td>
<td>-0.00796</td>
<td>-0.00638</td>
<td>-0.00795</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00642)</td>
<td>(0.00691)</td>
<td>(0.00643)</td>
<td>(0.00691)</td>
<td></td>
</tr>
<tr>
<td>(\ln(\text{COSPILLTECH}))</td>
<td>0.0717***</td>
<td>0.104***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0257)</td>
<td>(0.0287)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln(\text{COSPILLHP}))</td>
<td>-0.0659**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0264)</td>
<td>(0.0295)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln(\text{SPILLTECH}))</td>
<td>0.00436</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0143)</td>
<td>(0.0143)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln(\text{SPILLHP}))</td>
<td>0.0887***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0148)</td>
<td>(0.0148)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Institutional Ownership})</td>
<td>0.0804**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0359)</td>
<td>(0.0364)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year FE: Yes Yes Yes Yes Yes
Firm FE: Yes Yes Yes Yes Yes

Table 4. Citation-weighted measure of patents as a function of common ownership, technology spillovers, and product market spillovers.
The table reports coefficient estimates as per equation (18) with the dependent variable \(TCW_{it} \) using a negative binomial count data model. Standard errors are clustered at the firm level. Variable definitions are described in Section 3. Untabulated controls include firm sales, capital-labor ratio, and stock of R&D and the log of the dependent variable in \(t - 1 \).
innovation in Figure 1. We want to measure how corporate innovation varies with a one standard deviation increase in common ownership. This will depend on the level of technology and product market spillovers of each firm pair. Given that the variables $COSPILLTECH$ and $COSPILLHP$ incorporate the interactions of common ownership and the two respective spillovers, we proceed in the following way. We run the baseline regression and compute the predicted TCW. For every year t we then replace common ownership κ_{ij} at the pair level with $\kappa_{ij} + 0.15$ (an increase of one standard deviation) and compute the predicted level of corporate innovation. Next, we plot the difference between the predicted innovation with $\kappa_{ij} + 0.15$ and the predicted innovation with
Table 5. Stock market value of patents as a function of common ownership, technology spillovers, and product market spillovers.

The table reports negative binomial regression coefficient estimates of equation (18) with the dependent variable TSM_{it}. Standard errors are clustered at the firm level. Variable definitions are described in Section 3. Untabulated controls include firm sales, capital over labor, stock of R&D in t-1, and the log of the dependent variable in t-1 also included as controls.

k_{ij}. This difference in predicted innovation varies across firms, depending on their respective technology and product market spillovers. An increase of common ownership has a positive effect for roughly half the firms and a negative effect for the other half.

Similar patterns emerge in Table 5 which reports the coefficient estimates for the relationship between the total stock market value of patents and common ownership. On average, the total stock market value of patents is now significantly negatively correlated with common ownership across all specifications, though at varying levels of significance. As predicted by our theoretical framework, we find that this negative relationship is reversed when technology spillovers $SPILLTECH$ are larger. Again, this results is present in both the Jaffee and Mahalanobis specifications. The coefficient estimate for the interaction of common owners and product market spillovers $SPILLHP$, also as above and consistent with this paper’s theoretical predictions, is negative and statistically significant. The coefficient on institutional ownership is positive and
significant, in line with the results of Aghion et al. (2013). That is to say, as before, depending on the importance of technological spillovers across the universe of firms, common ownership can either be negatively or positively related to corporate innovation.

The relative importance of technology spillovers versus product market spillovers again leads to significant heterogeneity in the relationship between common ownership and innovation as can be seen in Figure 2. Again, about half of the implied common-ownership coefficient estimates at the firm level are positive and the other half is negative.

![Figure 2. Heterogeneity of the Relationship between Common Ownership and the Market Value of Patents TSM](image)

This figure plots the distribution of how an increase by one standard deviation in common ownership changes the market value of patents TSM taking into account firm-specific levels of technology and product market spillovers. Negative coefficient estimates are shown in red and positive ones in black.

Taken together, we find strong and consistent support for the model’s theoretical predictions.
First, there exists an empirically ambiguous relationship between common ownership and innovation that can be either positive or negative on average. Second, the innovation-reducing effect of common ownership increases with the degree of product market spillovers. Third, technology spillovers increase the innovation-enhancing effect of common ownership. As predicted by the theoretical framework, the overall effect of common ownership on corporate innovation crucially depends on the relative strength of product market business stealing incentives and of technological spillovers between firms and differs markedly across firms. The finding of small effects on R&D inputs but economically large effects (in some firms) on R&D outputs is consistent with the findings of Li et al. (2021) who find that common ownership by venture capitalists in the pharmaceutical industry reduces duplication of R&D and thus increases innovation efficiency.

4.3 Robustness to Alternative Specifications

We review the robustness of our results to alternative specifications. First we look at different definitions of Kappa. Appendix Table B1 shows the robustness of our main results (Jaffe and Mahalanobis proximity measures, and for each of the innovation variables) when kappas are aggregated using value-weights, to account for relative firm size among firm-pairs. Appendix Table B2 shows robustness to computing kappas using quarterly holdings and averaging pair-wise kappas at the year level. The results are mostly consistent with our baseline specifications. Some companies have κ greater than one, pointing to tunneling incentives (Backus et al., 2021). We show in Appendix Table B3 and B4 that our results are not driven by the firms with κ greater than 1. This is true regardless of how we impose the restriction that κ must be smaller than 1, either pairwise before aggregation or at the firm level after aggregation. We also show some robustness to different approaches in computing the technology spillover matrices. As shown in Section 3.3, we compute the $TECH_{ij}$ allowing patents with multiple classifications. In Appendix Table B5 we show that using only the first classification leads to consistent results. Furthermore, to avoid look-ahead bias (i.e., ensuring that a patent granted after year t is not used in a regression before t) we compute a $TECH_{ij}$ matrix for each year using patent data only up to that year. We show in Appendix Table B6 that the results also hold when we only use the first classification of the patent.
Table 2 indicates that this sample includes a wide variety of firms but their respective innovative activities are quite skewed as evidenced by the fact that the measures of innovation variables have large standard deviations. To show that the results are not driven by firms with low innovation activity or low spillovers, we conduct the same analysis with a subsample of firms with high innovation activity and high spillovers. We average innovation and spillovers across different industries, and then rank industries by each of those variables (R&D, TCW, TSM, SPILLTECH, and SPILLHP). We take the top 5 industries in each of those lists and keep the companies that are present in all 5 groups. This subsample selection procedure reduces our data set to 4,869 observations compared to the 31,169 observations in R&D equations and 28,060 observations in patent equations. Appendix Table B7 shows the robustness of our results for this subsample of firms.

To ensure that results are not driven by omitted variables, we further add institutional investor concentration as measured by the investor Herfindahl-Hirschman index (IHHI) which is correlated with institutional ownership and common ownership, as an additional regressor. Appendix Table B8 shows that the results remain qualitatively unchanged when including IHHI as a control.

Finally, we explore in Appendix Table B9 how common ownership affects changes in innovation by conducting regressions using lags of the independent variables. One could expect that R&D spending is adjusted more quickly when common ownership increases whereas the effect on patent grants may take longer to show up that the effect in R&D. We find some empirical support for this hypothesis. The results for R&D are decaying from $t - 1$ to $t - 3$ in magnitude and significance, but with some exceptions. The effect on patent grants takes longer to show up with the coefficients increasing from $t - 1$ to $t - 3$ in most specifications.

4.4 Addressing Endogeneity Concerns

One limitation of this study is that, in the theoretical model, ownership is taken as an exogenously given parameter whereas in the panel regressions presented above, ownership may be

19Firms from this subset of industries include Pharmaceuticals, Electronics, Services, Communications, Retail Trade, Transportation, Finance, Insurance, and & Real Estate industry. Table B7 contains more details.
endogenous, thus challenging a causal interpretation.20 That said, we find it difficult to formulate a simple economic model that would give rise to the two opposing effects we measure but not allow for a causal interpretation.

Assume, for example, a perfectly “passive” investor holding the market portfolio as a benchmark. Some types of active investors might pursue a strategy of underweighting industry competitors while overweighting technologically related firms, and at the same time they might have a preference for more innovation (for reasons unrelated to their portfolio choice). Other types of active investors might deliberately overweight industry competitors and sell other holdings while pushing firms to reduce innovation—again for reasons unrelated to their portfolio choice. We are not aware of an economic rationale that links these portfolio choices with a preference for low or high innovation. Or perhaps firms with high innovation activity attract active shareholders that tend to underweight industry competitors in their investment strategy, whereas firms with low innovation activities attract active investors that specialize in holding industry competitors. Again, we are not aware of an economic rationale that could give rise to such a relationship. The economic model proposed in the present paper provides a simple and economically intuitive explanation for the empirical patterns we observe.

Nonetheless we take these challenges to the identification of a causal channel between common ownership and innovation seriously. To that effect, we consider two standard shocks to common ownership from the literature. First, we consider using the addition of a competitor to the S&P500 as a shock to the extent to which S&P500 incumbents’ largest shareholders hold financial interests in competitors, as pioneered by Boller and Scott Morton (2020) and used by Antón et al. (2023b). The challenge is that in the present study, we measure common ownership not within industry but across the economy. As such, there are no index additions to competitors. All S&P500 incumbents would be treated by any entry, and only firms outside the S&P500 would serve as controls. This implementation would seem to make the shock less clean than in the previous use cases.21

Instead, we turn to the BlackRock-Barclays Global Investors merger as a second candidate shock. This acquisition in June 2009 serves as a better shock to ownership in our setting, because

20For example, Antón et al. (2023a) find that corporate mergers increasingly occur between firms that are more commonly owned and that are more closely related in product market space.

21Even though the implementation is less clean, we find results consistent with the panel regressions, which may be indicative of the direction of the results (provided in Appendix.)
it affects sample firms regardless of the industry. We modify the approach of Azar et al. (2018) by measuring common ownership with \(\kappa \) instead of MHHID. Furthermore, in contrast to Azar et al. (2018), we are not interested in the effect of a shock to common ownership, but in the effect of a shock to common ownership interacted with the two types of spillovers. We implement this idea in three different ways.

In the first approach, we compare the actual level of common ownership at the end of 2008 with the implied common ownership of companies as if the merger had happened at the end of 2008. We then compute the difference between the implied and actual levels and label it the implied change in common ownership. We sort companies by the implied change and take the top quartile as treated and bottom quartile as controls. We then run the regressions of R&D, \(TCW \), and \(TSM \) with the following two triple interaction terms as the primary coefficients of interest:

\[
TREATMENT \times POST \times SPILLTECH \quad \text{and} \quad TREATMENT \times POST \times SPILLHP.
\]

We control for the double interactions, dummies, and all controls as of the year before the shock, alone and interacted with the post dummy. The results, reported in Table 6 as Method 1 (columns 1-3), are consistent with the baseline analysis, but only significant for Tsm as the dependent variable. Taken at face value, these results suggest that this method does not lend itself to ascertain a causal effect of common ownership, one way or the other, on R&D expenditures or citations, but suggests a likely positive causal effect of common ownership the market value of patents between firms with high technological spillovers, and a negative causal effect of common ownership on the market value of patents between product market competitors.

The second approach is more granular and computes the implied change of common ownership interacted at the pair level with the measures of product market/technology spillovers (we could call it the implied \(COSPILLTECH \) and \(COSPILLHP \)). Compared to the previous approach, this one avoids a combination of high implied changes in common ownership treating pairs of firms for which either form of spillovers is low. We consider firms as treated only if they both are treated with a high implied increase in common ownership and also have high levels of spillovers. To do so, we first measure the pairwise actual kappas, and then the pairwise implied kappas. We then multiply the actual kappas with \(SPILLTECH \) at the pair level. Similarly, we multiply implied kappas with \(SPILLTECH \), so as to obtain the corresponding interaction term. We follow the
Table 6. Difference-in-Difference analysis for BLK-BGI Shock, Methods 1 and 2.
The table reports the difference in difference estimates using the BlackRock acquisition of BGI in 2008. In Method 1 (columns 1 to 3), treated firms are those in the top quartile of the implied change in common ownership, and control firms those in the bottom quartile. In Method 2 (columns 4 to 6), treated firms are those that are both in the top quartile of implied change in both COSPILLTECH and COSPILLHP. Untabulated controls include the double interactions, dummies, and all controls as of the year before the shock, alone and interacted with the post dummy.

The third approach has some similarity with the second approach. Again, we compute actual and implied kappas, and multiply them with COSPILLTECH and COSPILLHP at the dyad level. We then average at the firm level and sort them. Treated firms are now those companies above the median in the implied change in COSPILLTECH and below the median in the implied change of COSPILLHP. Conversely, control firms are those companies below the median in the implied
The table reports the difference in difference estimates using the BlackRock acquisition of BGI in 2008, for Method 3. Treated firms are now those companies above the median in the implied change in \textit{COSPILLTECH} and below the median in the implied change of \textit{COSPILLHP}, and conversely control firms are those companies below the median in the implied change in \textit{COSPILLTECH}, and above the median in the implied change of \textit{COSPILLHP}. Untabulated controls include the double interactions, dummies, and all controls as of the year before the shock, alone and interacted with the post dummy.

<table>
<thead>
<tr>
<th>Method</th>
<th>Method 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>\textit{R& D TCW TSM}</td>
<td></td>
</tr>
<tr>
<td>\textit{Post \times Treat}</td>
<td>-0.000938</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>\textit{Post}</td>
<td>-0.158</td>
</tr>
<tr>
<td></td>
<td>(0.736)</td>
</tr>
<tr>
<td>Observations</td>
<td>810</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
</tr>
</tbody>
</table>

change in \textit{COSPILLTECH} and above the median in the implied change of \textit{COSPILLHP}. Because this selection of treatment and control firms already incorporate the interactions between common ownership and spillovers, we no longer require the triple interactions and instead estimate a standard difference-in-differences model. Treated firms are those likely to affect innovation because they experience an increase in common ownership and have high \textit{SPILLTECH} and low \textit{SPILLHP}. Hence, the theory advanced in this paper predicts that the interaction coefficient should be positive. The results are shown in Table 7. The coefficient is positive and significant for \textit{TCW}, and positive but not significant for \textit{TSM}.

Overall, we interpret these results as consistent with causal effects of common ownership on innovation in the predicted ways, but by no means as conclusive. In particular, we were unable to infer positive casual effects of common ownership on R& D expenditures, and found results suggesting causal effects of common ownership between technologically related firms on stock market value of patents but not on citation-weighted patents. We conclude that the data and methods available to date do not allow strong conclusions regarding whether innovation is truly a bright side of common ownership, as suggested by some theoretical considerations. Therefore, a limitation of our study remains that we cannot establish with high levels of confidence that the correlations we uncover are likely to have a causal interpretation. However, these results
remains economically interesting, as a positive effect of common ownership on innovation, in some
theories, is a necessary condition for positive effects of common ownership on welfare. We discuss
this rationale and other conclusions in the next section.

4.5 Mechanism

The present paper provides theoretical predictions and empirical tests of the relationship be-
tween common ownership and corporate innovation. We do not intend to inform a debate about
the likely corporate governance mechanisms that implement such effects. That said, we find that
the “quiet life” mechanism detailed in Antón et al. (2023b) is sufficient to explain why common
owners of product market competitors would simply compete less by spending less money on inno-
vation when the innovation would have negative externalities, such as product market stealing, on
other portfolio firms. The new DOJ/FTC horizontal merger guidelines (U.S. Department of Jus-
tice and Federal Trade Commission, 2023) reflect this emerging consensus noting that “common
ownership can reduce competition by softening firms incentives to compete, even absent any spe-
cific anticompetitive act or intent.” Similarly, a sufficient mechanism for our technology spillover
results is that common ownership induces managers not to actively suppress innovation that would
spill over to other firms. Whereas mere passivity appears sufficient to lead to the results we docu-
ment, this does not imply the absence of active mechanisms. Shekita (2022) documents such active
corporate governance interventions including common owners actively encouraging portfolio firms
to innovate but not to enforce their patent rights vis-à-vis other commonly owned firms.

5 Conclusion

In this paper we show that common ownership can increase innovation when technological
spillovers are sufficiently large relative to product market spillovers. On the other hand, common
ownership can also decrease innovation because common owners would like to discourage busi-
ness stealing between commonly owned companies that compete in product markets against each
other. The direction of the theoretical prediction thus depends on parameters that vary across
firms, and poses an interesting empirical question about the sign and magnitude of the effect
of common ownership on innovation. We use our theoretical model’s predictions to investigate how the relationship between common ownership and innovation depends on the relative strength of technological and product market spillovers. Consistent with the model’s theoretical predictions, we find that common ownership has a positive panel correlation with innovation inputs and outputs whenever innovation spillovers to other firms are relatively large compared to the firms’ proximity in the product market space and a negative correlation if the product market spillovers dominate. Whether these correlations likely have a causal correlation largely remains an open question: shocks to the interaction between common ownership and technological spillovers caused by BlackRock’s acquisition of Barclays Global Investors are positively associated with the stock market value of patents, which likely reflects a causal effect. However, we do not find a robust negative effect in response to shocks to the interaction between common ownership and product market rivalry. Whether the lack of significance in this quasi-experimental setting is due to measurement noise, a lack of power, or simply because there is no strong causal link between common ownership and innovation remains an open question for future research.

Our findings inform an active debate on whether welfare-enhancing effects of common ownership outweigh the previously empirically documented negative effects of common ownership on firms’ incentives to compete. Because a positive effect on innovation—which we model as an efficiency increase in this paper—is a necessary condition for common ownership to positively affect welfare in López and Vives (2019), findings of positive innovation effects are a necessary ingredient in using this argument to warn against regulatory interventions on horizontal common ownership links that have competitive effects. The more nuanced insight, however, is that antitrust and innovation policy should distinguish between common ownership of horizontal competitors and common ownership of technologically and perhaps vertically related firms. Previous literature indicates that the former weakens competition and, as we show, also reduces innovation. Our theoretical analysis and empirical results suggest that the latter promotes innovation and may potentially increase total welfare.

References

Borochin, Paul, Jie Yang, and Rongrong Zhang, “Common ownership types and their effects on innovation and competition,” *Available at SSRN 3204767*, 2020.

Brander, James A and Barbara J Spencer, “Strategic commitment with R&D: the symmetric

40

Li, Xuelin, Tong Liu, and Lucian A. Taylor, “Common ownership and innovation efficiency,” Available at SSRN 3479439, 2021.

Lucking, Brian, Nicholas Bloom, and John Van Reenen, “Have R&D Spillovers Changed?,” *Journal of Legal Studies*, 2019.

1984, 52 (1), 101–21.

A Proofs and Additional Theoretical Results

A.1 Strategic Substitutes

We can rewrite the system of first order conditions given in equations (6) and (7) in the following way

\[(a + K \odot a') q = (A - \bar{\bar{c}}) \cdot 1 + Bx\]
\[(K \odot B') q = \gamma x\]

where \(\odot\) is the Hadamard (element-by-element) product, \(1\) is an \(n \times 1\) vector of ones, \(a\) is the product similarity matrix, \(B\) is the technology spillover matrix, and \(K\) is the common ownership matrix. The matrices \(a\), \(B\), and \(K\) are defined as follows:

\[
a = \begin{bmatrix}
1 & a_{12} & \cdots & a_{1n} \\
a_{21} & 1 & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & 1
\end{bmatrix}, \quad B = \begin{bmatrix}
1 & \beta_{12} & \cdots & \beta_{1n} \\
\beta_{21} & 1 & \cdots & \beta_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{n1} & \beta_{n2} & \cdots & 1
\end{bmatrix}, \quad K = \begin{bmatrix}
1 & \kappa_{12} & \cdots & \kappa_{1n} \\
\kappa_{21} & 1 & \cdots & \kappa_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\kappa_{n1} & \kappa_{n2} & \cdots & 1
\end{bmatrix}
\]

Defining \(K_a = a + K \odot a'\) and \(K_\beta = K \odot B'\) and plugging the second system of first-order conditions into the first yields the vector of equilibrium innovation \(x^*\) given by

\[
x^* = \begin{bmatrix}
x_1^* \\
x_2^* \\
\vdots \\
x_n^*
\end{bmatrix} = (A - \bar{\bar{c}}) \left[\gamma K_a K_\beta^{-1} - B\right]^{-1} \cdot 1. \quad (19)
\]
Recall the best response functions for \(q_i \) and \(x_i \) given in equation (6) and (7):

\[
q_i = \frac{1}{2} \left[A - \left(\bar{c} - x_i - \sum_{j \neq i}^n \beta_{ij} x_j \right) - \sum_{j \neq i}^n a_{ij} q_j - \sum_{j \neq i}^n \kappa_{ij} a_{ji} q_j \right]
\]

\[
x_i = \frac{1}{\gamma} \left(q_i + \sum_{j \neq i}^n \kappa_{ij} \beta_{ji} q_j \right)
\]

We are interested in finding conditions under which \(\frac{\partial x_i^*}{\partial \kappa_{ij}} > 0 \)

Rewriting (8) we have

\[
(A - \bar{c}) \cdot 1 = \left[\gamma K_a K_{\beta}^{-1} - B \right] x
\]

(20)

First, assume that \(B = I \) where \(I \) is the identity matrix. Thus, there are no technology spillovers as all off-diagonal elements \(\beta_{ij} \) of \(B \) are equal to zero. Therefore \(K_{\beta} = K \circ B' = I \).

Hence (8) becomes

\[
(A - \bar{c}) \cdot 1 = [\gamma K_a - I] x
\]

This system is isomorphic to a Cournot Game and the following reaction function for each firm \(i \):

\[
x_i = \frac{1}{2\gamma - 1} \left[(A - \bar{c}) - \gamma \sum_{j \neq i} (a_{ij} + \kappa_{ij} a_{ji}) x_j \right]
\]

We are looking for a stable Nash equilibrium, so we have to impose some restrictions on the parameters. In particular, we need that

\[
\left| \frac{\partial x_i}{\partial x_j} \right| < 1
\]

which imposes the following restriction

\[
\frac{\gamma}{2\gamma - 1} (a_{ij} + \kappa_{ij} a_{ji}) < 1.
\]

With this condition it follows that \(\frac{\partial x_i^*}{\partial \kappa_{ij}} < 0 \). A graphic representation for the \(n = 2 \) duopoly case is given in Figure 3.

Now instead assume that \(a = I \) such that there are no product market spillovers. The best
Figure 3. Innovation best response functions for $B = I$ and $n = 2$

response function for quantity (6) becomes

$$q_i = \frac{1}{2} \left[(A - \bar{c}) + x_i + \sum_{j \neq i} \beta_{ij} x_j \right]$$

which we can substitute into the best response function for innovation (7) to obtain

$$x_i = \frac{1}{\gamma} \left(\frac{1}{2} \left[(A - \bar{c}) + x_i + \sum_{j \neq i} \beta_{ij} x_j \right] + \sum_{j \neq i} \kappa_{ij} \beta_{ji} \frac{1}{2} \left[(A - \bar{c}) + x_j + \sum_{l \neq j} \beta_{jl} x_l \right] \right) .$$

By reordering terms we obtain

$$2 \gamma x_i = \left(1 + \sum_{j \neq i} \kappa_{ij} \beta_{ji} \right) (A - \bar{c}) + \left(1 + \sum_{j \neq i} \kappa_{ij} \beta_{ji}^2 \right) x_i + \sum_{j \neq i} \left(\beta_{ij} + \kappa_{ij} \beta_{ji} + \sum_{l \neq i,j} \kappa_{il} \beta_{li} \beta_{lj} \right) x_j .$$

Therefore this system is isomorphic to a Cournot game with positive spillovers (instead of negative
ones) with the following reaction function for firm i

$$x_i = \frac{(1 + \sum_{j \neq i}^{n} \kappa_{ij} \beta_{ji})}{2\gamma - 1 - (\sum_{j \neq i}^{n} \kappa_{ij} \beta_{ji}^2)} + \sum_{j \neq i}^{n} \frac{\beta_{ij} + \kappa_{ij} \beta_{ji} + \sum_{l \neq \{i,j\}}^{n} \kappa_{il} \beta_{li} \beta_{lj}}{2\gamma - 1 - (\sum_{j \neq i}^{n} \kappa_{ij} \beta_{ji}^2)} x_j$$

We are looking for a stable Nash equilibrium, so we have to impose some restrictions on the parameters. In particular, we need that

$$\left| \frac{\partial x_i}{\partial x_j} \right| < 1$$

which imposes the following restriction

$$\frac{\beta_{ij} + \kappa_{ij} \beta_{ji} + \sum_{l \neq \{i,j\}}^{n} \kappa_{il} \beta_{li} \beta_{lj}}{2\gamma - 1 - (\sum_{j \neq i}^{n} \kappa_{ij} \beta_{ji}^2)} < 1$$

It then follows that $\frac{\partial x_i^*}{\partial \kappa_{ij}} > 0$. A graphic representation for the $n = 2$ duopoly case is given in Figure 4.
Now consider the general case for arbitrary \(a \) and \(B \). Define

\[
\psi(a, B) = \frac{\partial x_i^*}{\partial \kappa_{ij}}(a, B)
\]

From our previous discussion we know that

\[
\psi(J, I) < 0 \quad \psi(I, J) > 0
\]

where \(J = 11' \). Since \(\psi \) is continuous and bounded then there exist \(\tilde{a} \) and \(\tilde{B} \) such that

\[
\psi(\tilde{a}, \tilde{B}) = 0
\]

Let \(\Delta = \{ a, B : \psi(a, B) = 0 \} \) denote the set of all such matrices. Then \(\psi(\tilde{a}, \tilde{B} + dB) > 0 \) for \(dB > 0 \): at our initial point the business stealing effect and the technology spillover effects offset each other, but now the technology spillover is bigger.

Illustration of the Symmetric Case Because the equilibrium expression of our asymmetric model are very unwieldy and do not offer any guidance beyond the comparative statics stated in Proposition 1, we provide the expressions of a simplified symmetric case for illustrative purposes. We assume that the owners are symmetric such that owner \(i \) owns a majority stake in firm \(i \) as well as a residual symmetric share in all other firms. Therefore, we have \(\kappa_{ij} = \kappa \). Furthermore, we assume that both the degree of product differentiation \(a_{ij} \) and technological spillovers \(\beta_{ij} \) are identical across firm pairs such that \(a_{ij} = a \) and \(\beta_{ij} = \beta \).

Solving for the symmetric equilibrium we obtain

\[
q^* = \frac{A - \bar{c}}{2b + a(n - 1)(1 + \kappa) - \tau B \gamma}
\]

\[
x^* = \frac{\tau}{\gamma} q^*
\]

where \(\tau = 1 + \kappa \beta (n - 1) \) and \(B = 1 + \beta (n - 1) \).

Common ownership \(\kappa \) affects equilibrium innovation \(x^* \) in equation (22) in two ways: (i)
through the “business stealing effect” on the equilibrium quantity q^* and (ii) through the “technology spillover effect” captured by τ.

From equation (21) one can see that whether the net effect of common ownership κ on equilibrium output q^* is positive or negative depends on the relative importance of product market spillovers a and technological spillovers β. Moreover, it is immediate from equations (21) and (22) that common ownership can only have a positive effect on output if it has a positive effect on innovation. The following proposition formalizes this insight, and makes it quantitatively precise.

Corollary 1. Denote β' as the (positive) solution to $1 + \beta(n-1) - \frac{a\gamma}{\beta} = 0$. The comparative statics of equilibrium quantity q^* and innovation x^* with respect to common ownership κ are characterized by 3 regions.

(i) If $\beta \leq \frac{a}{2+a(n-1)}$, then $\frac{\partial q^*}{\partial \kappa} < 0$ and $\frac{\partial x^*}{\partial \kappa} \leq 0$.

(ii) If $\frac{a}{2+a(n-1)} < \beta \leq \beta'$, then $\frac{\partial q^*}{\partial \kappa} \leq 0$ and $\frac{\partial x^*}{\partial \kappa} > 0$.

(iii) If $\beta > \beta'$, then $\frac{\partial q^*}{\partial \kappa} > 0$ and $\frac{\partial x^*}{\partial \kappa} > 0$.

Equilibrium innovation x^* is proportional to equilibrium quantity q^* and is also increasing in τ which itself is increasing in κ. Thus, if quantity q^* is increasing in the degree of common ownership κ then innovation x^* will also be increasing in common ownership. Compared to equilibrium quantity q^*, equilibrium innovation x^* receives an additional kick through τ because of the technological spillovers which common ownership internalizes. As a result, common ownership will increase equilibrium innovation for some parameter values for which common ownership will decrease equilibrium quantity.

Although our model provides predictions about the equilibrium quantity, our primary empirical focus is on how the equilibrium level of innovation x^* varies with the level of common ownership κ. Therefore, the first two parts of Corollary 1 which determine the threshold above which common ownership increases innovation, are instructive. In particular, product market and technology spillovers jointly determine the sign of the common ownership effect on innovation as the following corollary illustrates.

Corollary 2. Common ownership κ can decrease or increase innovation.
(i) If and only if product market spillovers are sufficiently large, \(a > \frac{2\beta}{1-\beta(n-1)} \), common ownership \(\kappa \) decreases equilibrium innovation \(x^* \). Otherwise, common ownership \(\kappa \) increases equilibrium innovation \(x^* \).

(ii) If and only if technology spillovers are sufficiently large, \(\beta > \frac{a}{2+a(n-1)} \), common ownership \(\kappa \) increases equilibrium innovation \(x^* \). Otherwise, common ownership \(\kappa \) decreases equilibrium innovation \(x^* \).

Corollary 2 shows that without knowledge of product differentiation and technological characteristics common ownership has an ambiguous effect on innovation.\(^{22}\) Depending on the relative strengths of (i) the business stealing and (ii) the technology spillover effect common ownership can either decrease or increase equilibrium innovation. However, the corollary also makes precise predictions under what conditions common ownership has a negative or a positive effect on innovation. Common ownership should decrease innovation if \(a \) is sufficiently large relative to \(\beta \), whereas common ownership should increase innovation if the opposite is the case. In other words, we expect common ownership to decrease (increase) innovation when product market spillovers are sufficiently large (small) and technology spillovers are sufficiently small (large).

Corollary 3. The effect of common ownership \(\kappa \) on innovation \(x^* \) is decreasing in product heterogeneity \(a \), \(\frac{\partial^2 x^*}{\partial \kappa \partial a} < 0 \), and increasing in technology proximity \(\beta \), \(\frac{\partial^2 x^*}{\partial \kappa \partial \beta} > 0 \).

Corollary 3 shows that product market and technology spillovers modify the relationship of common ownership on innovation in opposite ways. Whereas product market spillovers reinforce the negative effect of common ownership on innovation, technology spillovers strengthen its positive effects.

A.2 Strategic Complements

Consider the following change to our baseline model. Instead of competing in quantities \(q_i \), firms compete in prices \(p_i \). The proof for this case is essentially identical to the case of strategic

\(^{22}\)This insight helps explain the variation in empirical findings to date on the relation between common ownership and corporate innovation. These designs have not made the distinctions our model predicts to be crucial.
substitutes. The innovation reaction function of any firm \(i \) is linear and downward-sloping with respect to innovation of any firm \(j \).

Assume again, for illustrative purposes, that product market and technological spillovers are identical across the \(n \) firms in the economy. Given the representative consumer’s preferences the demand function facing firm \(i \) is given by

\[
q_i(p) = \omega - \rho p_i + \delta \sum_{j \neq i} p_j
\]

(23)

where \(p = (p_1, ..., p_n) \) is the vector of all product market prices, \(\omega = \frac{A}{1+(n-1)a} \), \(\rho = \frac{1+(n-2)a}{1+(n-1)a(1-a)} \), and \(\delta = \frac{a}{1+(n-1)a(1-a)} \). By assuming \(1 > a > 0 \) we have \(\rho > (n-1)\delta > 0 \). Thus, a firm’s price choice has a greater impact on the demand for its own product than its competitive rivals’ actions in that particular market.

The profits of firm \(i \) are given by

\[
\pi_i = (p_i - c_i) \left(\omega - \rho p_i + \delta \sum_{j \neq i} p_j \right) - \frac{\gamma}{2} x_i^2.
\]

(24)

The objective function of the owner of firm \(i \) is as in equation (5) given by

\[
\phi_i = \pi_i + \sum_{j \neq i} \kappa_{ij} \pi_j
\]

(25)

where we again, for illustrative purposes, assume that \(\kappa_{ij} = \kappa \) is identical across firms.

Firm \(i \)’s first-order conditions with respect to quantity \(p_i \) and innovation \(x_i \) can be rearranged to yield the following best-response functions:

\[
p_i = \frac{1}{2\rho} \left[\omega + \rho c_i + \delta \sum_{j \neq i} p_j + \kappa \delta \sum_{j \neq i} (p_j - c_j) \right]
\]

(26)

\[
x_i = \frac{1}{\gamma} \left(q_i + \kappa \beta \sum_{j \neq i} q_j \right)
\]

(27)

where \(q_i = \omega - \rho p_i + \delta \sum_{j \neq i} p_j \) and \(c_i = c - x_i - \beta \sum_{j \neq i} x_j \). We solve for the symmetric equilibrium
price p^* and equilibrium innovation x^* of the n firms in the economy which are given by

$$p^* = \frac{\gamma[\omega + \bar{c}(\rho - \kappa\Delta)] + \omega B(\rho - \kappa\Delta)\tau}{\gamma[2\rho - (1 + \kappa)\Delta] + B(\rho - \kappa\Delta)\tau(\rho - \Delta)}$$ \hspace{1cm} (28)

$$x^* = \frac{\tau}{\gamma}[\omega - p^*(\rho - \Delta)]$$ \hspace{1cm} (29)

where $\tau = 1 + \kappa\beta(n - 1)$, $B = 1 + \beta(n - 1)$, and $\Delta = \delta(n - 1)$.

As in the case of strategic substitutes, equilibrium innovation x^* increases (decreases) with common ownership κ, if technology spillovers β are sufficiently large (small) relative to product market spillovers α. A sufficient condition for $\frac{\partial x^*}{\partial \kappa} > 0$ is $\beta > \frac{\delta(\rho - \Delta)}{\rho(2\rho - \Delta)}$.
B Additional Empirical Results

Table B1. Innovation and Common Ownership with Value Weighted Kappas.
The table reports the baseline regressions for Jaffe (columns 1-3) and Mahalanobis (columns 4-6) proximity measures, where firm-level κs calculated value-weighting the pairwise κs across different pairs for each firm.

<table>
<thead>
<tr>
<th>Proximity Measures</th>
<th>Jaffe</th>
<th>Mahalanobis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Dependent Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R&D$ TCW TSM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>-0.000698</td>
<td>-0.00436</td>
</tr>
<tr>
<td></td>
<td>(0.000666)</td>
<td>(0.00571)</td>
</tr>
<tr>
<td>$\ln(COSPILLTECH)$</td>
<td>0.00515**</td>
<td>0.0721***</td>
</tr>
<tr>
<td></td>
<td>(0.00226)</td>
<td>(0.0257)</td>
</tr>
<tr>
<td>$\ln(COSPILLHP)$</td>
<td>-0.00451**</td>
<td>-0.0670**</td>
</tr>
<tr>
<td></td>
<td>(0.00222)</td>
<td>(0.0265)</td>
</tr>
<tr>
<td>$\ln(SPILLTECH)$</td>
<td>-0.00648**</td>
<td>-0.0725**</td>
</tr>
<tr>
<td></td>
<td>(0.00299)</td>
<td>(0.0304)</td>
</tr>
<tr>
<td>$\ln(SPILLHP)$</td>
<td>0.00667***</td>
<td>0.155***</td>
</tr>
<tr>
<td></td>
<td>(0.00245)</td>
<td>(0.0298)</td>
</tr>
<tr>
<td>Institutional Ownership</td>
<td>-0.0314***</td>
<td>0.0571</td>
</tr>
<tr>
<td></td>
<td>(0.00415)</td>
<td>(0.0370)</td>
</tr>
</tbody>
</table>

Observations	31,169	28,060	28,060	31,186	28,076	28,076
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
FirmFE	Yes	Yes	Yes	Yes	Yes	Yes

Table B2. Innovation and Common Ownership when Kappas are averaged across the four quarters of the year.
The table reports the baseline tables when κs are averaged across the four quarters of the year, instead of taking the snapshot of December of each year.

<table>
<thead>
<tr>
<th>Proximity Measures</th>
<th>Jaffe</th>
<th>Mahalanobis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Dependent Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R&D$ TCW TSM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>-0.00182*</td>
<td>-0.0185*</td>
</tr>
<tr>
<td></td>
<td>(0.000934)</td>
<td>(0.0103)</td>
</tr>
<tr>
<td>$\ln(COSPILLTECH)$</td>
<td>0.00480**</td>
<td>0.0664**</td>
</tr>
<tr>
<td></td>
<td>(0.00222)</td>
<td>(0.0281)</td>
</tr>
<tr>
<td>$\ln(COSPILLHP)$</td>
<td>-0.00353</td>
<td>-0.0563*</td>
</tr>
<tr>
<td></td>
<td>(0.00230)</td>
<td>(0.0290)</td>
</tr>
<tr>
<td>$\ln(SPILLTECH)$</td>
<td>-0.00605**</td>
<td>-0.0640**</td>
</tr>
<tr>
<td></td>
<td>(0.00289)</td>
<td>(0.0321)</td>
</tr>
<tr>
<td>$\ln(SPILLHP)$</td>
<td>0.00517**</td>
<td>0.144***</td>
</tr>
<tr>
<td></td>
<td>(0.00250)</td>
<td>(0.0318)</td>
</tr>
<tr>
<td>Institutional Ownership</td>
<td>-0.0316***</td>
<td>0.0540</td>
</tr>
<tr>
<td></td>
<td>(0.00411)</td>
<td>(0.0371)</td>
</tr>
</tbody>
</table>

Observations	31,431	28,308	28,308	31,436	28,313	28,313
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
FirmFE	Yes	Yes	Yes	Yes	Yes	Yes

52
Table B3. Innovation and Common Ownership when pairwise Kappas are lower than 1 (before the aggregation).
The table reports the baseline tables where we restrict pair-wise κ's (before aggregating at the firm level) to be lower or equal to 1.

<table>
<thead>
<tr>
<th>Proximity Measures</th>
<th>Jaffe</th>
<th>Mahalanobis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Dependent Variable</td>
<td>R&D</td>
<td>TCW</td>
</tr>
<tr>
<td>CO</td>
<td>-0.000958</td>
<td>-0.444***</td>
</tr>
<tr>
<td>ln(COSPILLTECH)</td>
<td>0.00513**</td>
<td>0.0657***</td>
</tr>
<tr>
<td>ln(COSPILLHP)</td>
<td>-0.00465**</td>
<td>-0.0337</td>
</tr>
<tr>
<td>ln(SPILLTECH)</td>
<td>-0.00646**</td>
<td>-0.0676**</td>
</tr>
<tr>
<td>ln(SPILLHP)</td>
<td>0.00678***</td>
<td>0.116***</td>
</tr>
<tr>
<td>Institutional Ownership</td>
<td>-0.0305***</td>
<td>0.00326</td>
</tr>
</tbody>
</table>

Observations 31,169 28,060 28,060 31,186 28,076 28,076
Year FE Yes Yes Yes Yes Yes Yes
FirmFE Yes Yes Yes Yes Yes Yes

Table B4. Innovation and Common Ownership when firm-level Kappas are lower than 1 (after the aggregation).
The table reports the baseline tables where we restrict firm-level κ's (after the pairwise aggregation) to be lower or equal to 1.

<table>
<thead>
<tr>
<th>Proximity Measures</th>
<th>Jaffe</th>
<th>Mahalanobis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Dependent Variable</td>
<td>R&D</td>
<td>TCW</td>
</tr>
<tr>
<td>CO</td>
<td>0.00622</td>
<td>-0.198**</td>
</tr>
<tr>
<td>ln(COSPILLTECH)</td>
<td>0.00461**</td>
<td>0.0687***</td>
</tr>
<tr>
<td>ln(COSPILLHP)</td>
<td>-0.00425*</td>
<td>-0.0441</td>
</tr>
<tr>
<td>ln(SPILLTECH)</td>
<td>-0.00471*</td>
<td>-0.0738**</td>
</tr>
<tr>
<td>ln(SPILLHP)</td>
<td>0.00649***</td>
<td>0.127***</td>
</tr>
<tr>
<td>Institutional Ownership</td>
<td>-0.0349**</td>
<td>0.00260</td>
</tr>
</tbody>
</table>

Observations 30,611 27,539 27,539 30,626 27,553 27,553
Year FE Yes Yes Yes Yes Yes Yes
FirmFE Yes Yes Yes Yes Yes Yes
Table B5. Innovation and Common Ownership using only first classification patent.
The table reports the baseline results when we compute the TECH matrices using only the first classification patent.

<table>
<thead>
<tr>
<th>Proximity Measures</th>
<th>Jaffe</th>
<th>Mahalanobis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Dependent Variable</td>
<td>R&D</td>
<td>TCW</td>
</tr>
<tr>
<td>CO</td>
<td>-0.000551</td>
<td>-0.00794</td>
</tr>
<tr>
<td></td>
<td>(0.000790)</td>
<td>(0.00688)</td>
</tr>
<tr>
<td>ln(COSPILLTECH)</td>
<td>0.00458**</td>
<td>0.0508**</td>
</tr>
<tr>
<td></td>
<td>(0.00190)</td>
<td>(0.0257)</td>
</tr>
<tr>
<td>ln(COSPILLHP)</td>
<td>-0.00395**</td>
<td>-0.0447*</td>
</tr>
<tr>
<td></td>
<td>(0.00186)</td>
<td>(0.0257)</td>
</tr>
<tr>
<td>ln(SPELLTECH)</td>
<td>-0.00388</td>
<td>-0.0474</td>
</tr>
<tr>
<td></td>
<td>(0.00236)</td>
<td>(0.0290)</td>
</tr>
<tr>
<td>ln(SPELLHP)</td>
<td>0.00593***</td>
<td>0.132***</td>
</tr>
<tr>
<td></td>
<td>(0.00214)</td>
<td>(0.0295)</td>
</tr>
<tr>
<td>Institutional Ownership</td>
<td>-0.0312***</td>
<td>0.0564</td>
</tr>
<tr>
<td></td>
<td>(0.00414)</td>
<td>(0.0370)</td>
</tr>
<tr>
<td>Observations</td>
<td>31,147</td>
<td>28,048</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FirmFE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table B6. Innovation and Common Ownership using no-rolling patent window (similar to Bloom et al.).
The table reports the baseline results when we compute the TECH matrices using a full matrix of patent correlation using all years, instead of using a rolling window to avoid look ahead bias.

<table>
<thead>
<tr>
<th>Proximity Measures</th>
<th>Jaffe</th>
<th>Mahalanobis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Dependent Variable</td>
<td>R&D</td>
<td>TCW</td>
</tr>
<tr>
<td>CO</td>
<td>-0.000536</td>
<td>-0.00788</td>
</tr>
<tr>
<td></td>
<td>(0.000789)</td>
<td>(0.00688)</td>
</tr>
<tr>
<td>ln(COSPILLTECH)</td>
<td>0.00482**</td>
<td>0.0819***</td>
</tr>
<tr>
<td></td>
<td>(0.00246)</td>
<td>(0.0272)</td>
</tr>
<tr>
<td>ln(COSPILLHP)</td>
<td>-0.00424*</td>
<td>-0.0759***</td>
</tr>
<tr>
<td></td>
<td>(0.00239)</td>
<td>(0.0277)</td>
</tr>
<tr>
<td>ln(SPELLTECH)</td>
<td>-0.0179***</td>
<td>-0.06867</td>
</tr>
<tr>
<td></td>
<td>(0.00672)</td>
<td>(0.0341)</td>
</tr>
<tr>
<td>ln(SPELLHP)</td>
<td>0.00716***</td>
<td>0.152***</td>
</tr>
<tr>
<td></td>
<td>(0.00259)</td>
<td>(0.0307)</td>
</tr>
<tr>
<td>Institutional Ownership</td>
<td>-0.0311***</td>
<td>0.0467</td>
</tr>
<tr>
<td></td>
<td>(0.00413)</td>
<td>(0.0371)</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FirmFE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table B7. Subsample of Highest Innovation and Greatest Spillovers.

This table shows the results of a subsample of firms that have greater potential of spillovers, and highest innovation activity. There may be many firms with little to no innovation activity, and also the potential "spillable" set of firms is limited. To show that our results are robust to this subsample of firms we conduct the same analysis using a subset of the companies with highest innovation activity and highest potential spillovers. To do this we have computed the average innovation input and output, and the average spillovers for each industry in our sample. We then rank industries by each of those variables (R&D, TCW, TSM, SPILLTECH and SPILLHP). We take the top 5 industries in each of those lists, and keep the companies that are present in all 5 groups. We conduct the same analysis using only companies in those industries, which reduces our sample to 4,869 observations (compared to the 31,169 in R&D equations, and 28,060 in patent equations). Firms are from this subset of industries: Within the Pharmaceuticals sector, we have codes 2836 (Biological Products, excluding Diagnostic), 2835 (Diagnostic Substances), and 2834 (Pharmaceutical Preparations). The Electronic & Other Electrical Equipment category includes 3575 (Computer Terminals), 3570 (Computer and Office Equipment), 3600 (Electronic & Other Electrical Equipment & Components), and 3576 (Computer Communications Equipment). Services are represented by 8731 (Commercial Physical and Biological Research) and 8721 (Accounting, Auditing, and Bookkeeping). The Miscellaneous category contains the non-specific code 9997 for Nonclassifiable Establishments. Communications is represented by 4812 (Radiotelephone Communications). Retail Trade encompasses 5961 (Catalog and Mail-Order Houses). The Transportation & Public Utilities sector includes 4888 (Marine Terminals) and 4220 (Public Warehousing and Storage). Lastly, the Finance, Insurance, & Real Estate industry features codes 6799 (Investors, NEC), 6500 (Real Estate), and 6552 (Land Subdividers and Developers, Except Cemeteries).

<table>
<thead>
<tr>
<th>Proximity Measures</th>
<th>Jaffe (1)</th>
<th>Jaffe (2)</th>
<th>Jaffe (3)</th>
<th>Mahalanobis (4)</th>
<th>Mahalanobis (5)</th>
<th>Mahalanobis (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>R&D</td>
<td>TCW</td>
<td>TSM</td>
<td>R&D</td>
<td>TCW</td>
<td>TSM</td>
</tr>
<tr>
<td>CO</td>
<td>-0.00329** (0.00165)</td>
<td>0.00317 (0.0131)</td>
<td>-0.0216 (0.0158)</td>
<td>-0.00318* (0.00163)</td>
<td>0.00369 (0.0130)</td>
<td>-0.0212 (0.0157)</td>
</tr>
<tr>
<td>ln(COSPILLTECH)</td>
<td>0.0112 (0.00917)</td>
<td>0.105** (0.0428)</td>
<td>0.210*** (0.0654)</td>
<td>0.0149 (0.00923)</td>
<td>0.134*** (0.0491)</td>
<td>0.191** (0.0813)</td>
</tr>
<tr>
<td>ln(COSPILLHP)</td>
<td>-0.00876 (0.00969)</td>
<td>-0.105** (0.0454)</td>
<td>-0.222*** (0.0682)</td>
<td>-0.0129 (0.00971)</td>
<td>-0.137*** (0.0522)</td>
<td>-0.205** (0.0837)</td>
</tr>
<tr>
<td>ln(SPILLTECH)</td>
<td>-0.0209* (0.0124)</td>
<td>-0.175*** (0.0678)</td>
<td>-0.268*** (0.0898)</td>
<td>-0.0240 (0.0158)</td>
<td>-0.191** (0.0896)</td>
<td>-0.255** (0.118)</td>
</tr>
<tr>
<td>ln(SPILLHP)</td>
<td>0.0158 (0.0119)</td>
<td>0.131** (0.0631)</td>
<td>0.330*** (0.0895)</td>
<td>0.0196* (0.0119)</td>
<td>0.159** (0.0694)</td>
<td>0.310*** (0.0901)</td>
</tr>
<tr>
<td>Institutional Ownership</td>
<td>-0.0712*** (0.0164)</td>
<td>0.160** (0.0705)</td>
<td>0.438*** (0.0897)</td>
<td>-0.0720*** (0.0165)</td>
<td>0.153** (0.0710)</td>
<td>0.441*** (0.0901)</td>
</tr>
<tr>
<td>Observations</td>
<td>4,869</td>
<td>4,876</td>
<td>4,876</td>
<td>4,873</td>
<td>4,877</td>
<td>4,877</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FirmFE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

55
Table B8. Innovation and Common Ownership with IHHI as additional regressor.

The table reports the baseline table with IHHI as an additional regressor. IHHI is the institutional Herfindahl Index, computed as the sum of squares of institutional ownership stakes.

<table>
<thead>
<tr>
<th>Proximity Measures</th>
<th>Jaffe</th>
<th>Mahalanobis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Dependent Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&D</td>
<td>-0.000410</td>
<td>-0.0106</td>
</tr>
<tr>
<td>TCW</td>
<td></td>
<td>(0.000788)</td>
</tr>
<tr>
<td>TSM</td>
<td></td>
<td>(0.000788)</td>
</tr>
<tr>
<td>ln(COSPILLTECH)</td>
<td>0.00499**</td>
<td>0.0750***</td>
</tr>
<tr>
<td></td>
<td>(0.00227)</td>
<td>(0.0258)</td>
</tr>
<tr>
<td>ln(COSPILLHP)</td>
<td>-0.00484**</td>
<td>-0.0586**</td>
</tr>
<tr>
<td></td>
<td>(0.00223)</td>
<td>(0.0263)</td>
</tr>
<tr>
<td>ln(SPILLTECH)</td>
<td>-0.00633**</td>
<td>-0.0758**</td>
</tr>
<tr>
<td></td>
<td>(0.00302)</td>
<td>(0.0304)</td>
</tr>
<tr>
<td>ln(SPILLHP)</td>
<td>0.00700***</td>
<td>0.148***</td>
</tr>
<tr>
<td></td>
<td>(0.00246)</td>
<td>(0.0296)</td>
</tr>
<tr>
<td>Institutional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ownership</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&D</td>
<td>-0.0307***</td>
<td>0.0478</td>
</tr>
<tr>
<td>TCW</td>
<td></td>
<td>(0.00414)</td>
</tr>
<tr>
<td>TSM</td>
<td></td>
<td>(0.00414)</td>
</tr>
<tr>
<td>ln(IHHI)</td>
<td>-0.00726</td>
<td>0.197***</td>
</tr>
<tr>
<td></td>
<td>(0.00549)</td>
<td>(0.0825)</td>
</tr>
<tr>
<td>Observations</td>
<td>31,169</td>
<td>28,060</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FirmFE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table B9. Innovation and Common Ownership with Lags of Independent Variables.
The table reports the baseline tables with different lags for the independent variables.

PANEL A: USING JAFFE PROXIMITY MEASURES

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ind Vars t-1</td>
<td>Ind Vars t-2</td>
<td>Ind Vars t-3</td>
<td>Ind Vars t-4</td>
<td>Ind Vars t-5</td>
<td></td>
</tr>
<tr>
<td>Dependent variable log(1+R&D/Assets) in t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>-0.000527</td>
<td>-0.000215</td>
<td>-0.000439</td>
<td>-0.00116</td>
<td>-0.00157</td>
</tr>
<tr>
<td>ln(COSPILLTECH)</td>
<td>0.00513**</td>
<td>0.00422*</td>
<td>0.00362</td>
<td>0.00557***</td>
<td>0.00316</td>
</tr>
<tr>
<td>ln(COSPILLHP)</td>
<td>-0.00457**</td>
<td>-0.00441**</td>
<td>-0.00327</td>
<td>-0.00432**</td>
<td>-0.00197</td>
</tr>
</tbody>
</table>

Dependent variable TCW in t

CO	-0.00796	-0.0223***	-0.00345	0.00548	0.00603
ln(COSPILLTECH)	0.0717***	0.0534*	0.103**	0.0965**	0.0380
ln(COSPILLHP)	-0.0659**	-0.0351	-0.0761*	-0.0760*	-0.00150

Dependent variable TSM in t

CO	-0.0104*	-0.0119	0.0376	0.00333	0.00889
ln(COSPILLTECH)	0.101***	0.147***	0.193***	0.0489	-0.0473
ln(COSPILLHP)	-0.102***	-0.130***	-0.179***	-0.0218	0.0817

PANEL B: USING MAHALANOBIS PROXIMITY MEASURES

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ind Vars t-1</td>
<td>Ind Vars t-2</td>
<td>Ind Vars t-3</td>
<td>Ind Vars t-4</td>
<td>Ind Vars t-5</td>
<td></td>
</tr>
<tr>
<td>Dependent variable log(1+R&D/Assets) in t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>-0.000451</td>
<td>-0.000201</td>
<td>-0.000416</td>
<td>-0.00114**</td>
<td>-0.00154**</td>
</tr>
<tr>
<td>ln(COSPILLTECH)</td>
<td>0.00506**</td>
<td>0.00320</td>
<td>0.00113</td>
<td>0.00366*</td>
<td>0.00183</td>
</tr>
<tr>
<td>ln(COSPILLHP)</td>
<td>-0.00459**</td>
<td>-0.00339</td>
<td>-0.000891</td>
<td>-0.00243</td>
<td>-0.000643</td>
</tr>
</tbody>
</table>

Dependent variable TCW in t

CO	-0.00795	-0.0217***	-0.00391	0.00479	0.00548
ln(COSPILLTECH)	0.104***	0.0700**	0.148***	0.124***	0.0807
ln(COSPILLHP)	-0.0978***	-0.0518	-0.120***	-0.103**	-0.0436

Dependent variable TSM in t

CO	-0.0106*	-0.0121	0.0365	0.00262	0.00779
ln(COSPILLTECH)	0.108***	0.159***	0.235***	0.108	0.0256
ln(COSPILLHP)	-0.110***	-0.143***	-0.220***	-0.0806	0.00934