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Abstract

This paper examines the effects of over 1,000 acquisitions by major technology firms on
innovation. Using detailed patent and workforce data linked to technology acquisitions
and a suite of event-study and difference-in-differences designs, we document four main
findings. First, although most acquired startups hold no patents, those with patents
tend to operate in technology areas where the acquirer already has a presence and which
subsequently experience further acquisition activity. Second, innovation typically rises
before an acquisition but only persists afterward when follow-on acquisitions occur,
suggesting that acquisitions reinforce rather than reverse innovation trends. Third, at
the patent level, acquired patents receive significantly more citations after the acquisi-
tion than comparable patents, and these effects are not driven solely by self-citations
from the acquiring firm. These post-acquisition citation effects are smaller when more
employees from the acquired firm are retained, consistent with innovation spillovers
occurring through employee mobility. Fourth, we document significant workforce attri-
tion exceeding 60% on average at target firms three years post-acquisition. Our results
suggest that acquisitions by digital incumbents often amplify, rather than suppress, the
diffusion and visibility of acquired technologies.
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1 Introduction

The rising dominance of large digital platforms has sparked renewed interest in the competi-
tive implications of their acquisition behavior. Over the past two decades, leading technology
firms—including Amazon, Apple, Facebook, Google, and Microsoft (commonly referred to
as GAFAM)—have engaged in hundreds of acquisitions, often targeting early-stage startups
in adjacent or emerging technology markets. Among regulators, policymakers, and scholars,
a growing concern is that some of these acquisitions may be “killer acquisitions,” in which
incumbents acquire startups not to commercialize innovations, but to eliminate a future
competitive threat (Federal Trade Commission, 2021; OECD, 2020).

While the term “killer acquisition” was first applied to the pharmaceutical industry where
empirical work has shown that incumbent firms may terminate overlapping drug develop-
ment pipelines post-acquisition (Cunningham, Ederer and Ma, 2021), the term has quickly
gained traction in the digital economy (Motta and Peitz, 2021; OECD, 2020). In contrast to
pharmaceuticals, however, the innovation environment in the tech industry is less reliant on
formal intellectual property, and more centered around talent acquisition and platform inte-
gration (Gawer, Cusumano et al., 2002; Jin, Leccese and Wagman, 2023; Olmsted-Rumsey,
Puglisi and Wu, 2024). This raises fundamental questions about whether, and how, the
“killer acquisition” logic applies to the digital sector.

This paper investigates the effects of startup acquisitions by major digital incumbents
on subsequent innovation outcomes within narrowly defined technological domains. Instead
of focusing on the ex-ante incentives of a potential acquisition targets which is a common
emphasis in the theoretical literature, we examine ex-post outcomes using an event-study
framework. Specifically, we analyze changes in patenting and patent citation before and
after an acquisition, thereby assessing how these deals reshape the trajectory of innovation
in the affected technology space.

We make three main contributions to the literature on acquisitions, innovation, and
competition policy. First, we provide a comprehensive empirical mapping of the acquisition
behavior of eight major digital firms (the GAFAM firms plus Cisco, Intel and Qualcomm).
We manually compile a dataset of over 1,000 acquisitions and link this information to patent
data from PatentsView and labor market data from Revelio Labs. We show that while
these firms have acquired a large number of startups, the majority of targets do not hold
patents at the time of acquisition which suggests that many deals are motivated by access to
capabilities, products, customers, or personnel rather than formal intellectual property. We
also find that while retention rates vary substantially across deals, on average, only 45% of
target firm employees remain at the acquirer three years after the acquisition, highlighting
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the fragility of workforce integration.
We find that acquisitions are highly concentrated in specific technological domains and

often represent repeated engagement by the same acquirer in a given area. For instance,
firms like Intel and Qualcomm which are traditionally hardware-focused, tend to acquire
targets in CPC categories where they already hold patents, suggesting a form of cumulative
innovation or vertical integration. In contrast, software-oriented firms such as Facebook or
Amazon are more likely to pursue acquisitions without patents, perhaps reflecting a focus
on user bases, engineering talent, or data assets.

Second, we construct a panel dataset at the technology-class-year level that allows us to
analyze innovation trends surrounding each deal. We find that innovation frequently precedes
acquisition, a finding that undermines the “killer acquisition” narrative in its strongest form,
where the incumbent preemptively shuts down nascent rivals. Instead, we find that many
acquisitions follow a surge of patenting within the same CPC groups where the acquired
startup obtains patents, consistent with incumbents acquiring startups to access promising
technologies.

Using a suite of event-study and difference-in-differences analyses, we also estimate the
causal impact of acquisitions on subsequent innovation activity. We find that patenting ac-
tivity in affected Cooperative Patent Classification (CPC) groups generally continues to rise
after an acquisition. This pattern is robust to matching treated CPC groups with control
groups based on pre-acquisition growth trends and controlling for a range of fixed effects.
The post-acquisition growth in patenting is especially pronounced when follow-on acquisi-
tions occur in the same technology space. Recent antitrust policy has also shifted toward
recognizing the broader strategic implications of repeated acquisitions. Rather than evalu-
ating transactions solely on a case-by-case basis, regulators are increasingly concerned with
the cumulative effects of serial acquisitions within a particular technological or geographic
domain. The 2023 U.S. Merger Guidelines explicitly acknowledge that mergers occurring
as part of a pattern or roll-up strategy may be assessed collectively rather than in isola-
tion (U.S. Department of Justice and Federal Trade Commission, 2023). This perspective
is reinforced by recent empirical work on acquisition rollups in health care markets, which
documents the anticompetitive risks posed by fragmented yet systematic buying strategies
(Asil, Ramos, Starc and Wollmann, 2024). Our analysis of repeated acquisitions within CPC
technology classes provides complementary evidence in the digital sector and speaks directly
to this evolving regulatory framework.

Third, in addition to CPC group-level analyses, we examine the effects of acquisitions
at the level of individual patents. Using a difference-in-differences framework, we show that
acquired patents receive significantly more citations after the acquisition than comparable
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patents in the same CPC group. These effects are not limited to citations from the acquiring
firm, but extend to third-party citations, suggesting that acquisitions increase the visibility
and influence of acquired technologies across the broader technology ecosystem. The post-
acquisition citation boost is especially pronounced for first-acquired targets in CPC groups
that experience follow-on acquisitions, indicating that the strategic sequencing of acquisi-
tions may amplify knowledge diffusion. We also find that post-acquisition citation effects
are significantly smaller when a larger share of the workforce is retained. This surprising
result suggests that innovation spillovers may be driven in part by departing employees, who
disseminate knowledge beyond the acquiring firm.

Our findings complicate the popular narrative that digital acquisitions by large incum-
bents are predominantly anti-competitive. While we do not rule out the possibility of killer
acquisitions in individual cases, our evidence suggests that most deals by GAFAM and re-
lated firms are motivated by complementarity rather than suppression. Innovation tends to
rise rather than fall in the wake of acquisition, particularly in technological domains where
the acquirer has prior experience and continues to make follow-on investments.

This paper contributes to several strands of literature at the intersection of innovation,
acquisitions, and competition policy. First, we build on a growing body of empirical work
on killer acquisitions, beginning with Cunningham et al. (2021) in the pharmaceutical in-
dustry. Their framework identifies acquisitions that lead to the termination of overlapping
drug development projects, thereby suppressing future competition. Subsequent research
has extended this idea to other sectors. For example, Lemos and Resende (2023) examine
digital markets, while Kamepalli, Rajan and Zingales (2020) explore data-driven barriers to
entry following acquisitions by dominant platforms. Our analysis complements this work
by focusing on ex-post outcomes in patenting activity rather than ex-ante project termina-
tions. Jin et al. (2023) show that GAFAM made more tech acquisitions per firm than other
top acquirers, targeting younger and more consumer-facing firms. Crucially, they find no
evidence that GAFAM acquisitions reduce entry by other acquirers in the same category,
suggesting that such deals do not deter competition, thereby complementing our finding that
acquisitions do not suppress innovation within targeted technologies.

Second, we relate to broader literature on the link between competition policy and in-
novation (Gilbert, 2020). Buehler and Schmutzler (2005), Valletti and Zenger (2017), and
Gaffard and Quatraro (2022) provide theoretical and empirical perspectives on how con-
solidation can affect both the intensity and direction of innovative effort. Our event-study
design allows us to trace such effects dynamically within narrowly defined technological ar-
eas. In contrast to most existing work, we focus specifically on startup acquisitions by digital
incumbents and analyze repeated treatments over time. Like us, Watzinger, Fackler, Nagler
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and Schnitzer (2020) and Poege (2024) use patent data to study how competition policy
influences innovation across a set of related technology domains. Whereas they focus on a
single historically significant enforcement action (the 1956 AT&T consent decree and the
post-war breakup of IG Farben, respectively), we consider a large number of more recent
acquisitions.

Third, we contribute to a broad literature on markets for technology (e.g., Arora and
Gambardella, 2010, inter alia), that frequently uses patent data to measure innovation out-
comes. The use of Cooperative Patent Classification (CPC) groups as a proxy for techno-
logical domains follows prior work such as Hall, Jaffe and Trajtenberg (2001) and Bloom,
Schankerman and Van Reenen (2013). We also draw on insights from the literature on patent
citations as a measure of knowledge spillovers, including Jaffe, Trajtenberg and Henderson
(1993) and Akcigit, Grigsby and Nicholas (2016).

The rest of the paper is organized as follows. Section 2 describes our data sources and the
construction of the CPC-year panel. Section 2 provides descriptive statistics on acquisitions,
targets, and patenting patterns. Section 4 presents our main empirical analysis of post-
acquisition patenting outcomes and uses citation-based metrics to capture the influence and
quality of innovation. Section 5 concludes with a discussion of implications for competition
policy and future research directions.

2 Data

To investigate the effects of acquisitions by major digital firms on innovation, we construct
a novel dataset that combines acquisition activity with detailed patent-level information.
This section describes our data sources, the construction of key variables, and the process
by which we merge acquisition records with patent data.

2.1 Acquisition Data

We begin by assembling a manually curated dataset of startup acquisitions by eight promi-
nent technology companies: Amazon, Apple, Cisco, Facebook, Google, Intel, Microsoft, and
Qualcomm. We selected these firms due to their longstanding presence in the digital and
information technology sectors, their high frequency of acquisition activity, and their central
role in current debates on digital competition and innovation policy. While Amazon, Apple,
Facebook, Google, and Microsoft are typically characterized as digital platforms serving end
users directly, firms like Intel, Cisco, and Qualcomm are equally important players, operat-
ing as key infrastructure and input providers in the broader digital ecosystem. These firms
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specialize in semiconductors, networking hardware, and communication protocols, and their
acquisitions often target upstream innovations essential for enabling broader technological
progress.

All eight firms have drawn antitrust scrutiny for their acquisition behavior. Notable exam-
ples include the FTC’s investigation of Facebook’s acquisitions of Instagram and WhatsApp,1

the U.S. Department of Justice’s (DOJ) antitrust lawsuit against Apple alleging monopolis-
tic practices in the smartphone market,2 and the FTC’s inquiries into Microsoft’s, Google’s
and Amazon’s investments in generative AI companies like OpenAI and Anthropic.3 Qual-
comm’s proposed acquisition of NXP Semiconductors faced global regulatory delays before
collapsing in 2018,4 while Intel and Cisco have also faced merger reviews due to their active
roles in consolidating upstream technology markets. In addition, the European Union’s Dig-
ital Markets Act (DMA), obliges designated “gatekeepers” (including all five GAFAM firms)
to notify the European Commission of any planned acquisition involving a digital sector
company, even if the deal does not meet the formal merger notification thresholds at the
EU or national level.5 Our data capture this diverse spectrum of acquisition strategies and
regulatory attention across platform and infrastructure firms alike.

For each acquisition, we record the name of the acquired company, the year in which
the acquisition occurred, and, where available, information about the target’s patenting
activity and deal value. Our focus is on startup acquisitions, which we define as acquisitions
involving relatively small and early-stage companies. To ensure that we capture innovation-
driven transactions, we exclude large deals involving targets with extensive patent portfolios
(e.g., Apple’s acquisition of Intel’s modem business). These exclusions allow us to avoid
confounding effects from horizontal consolidation and instead focus on the acquisition of
emerging innovators.

We link each acquired startup to its corresponding patenting history using name-based

1Federal Trade Commission, “FTC Sues Facebook for Illegal Monopolization,” December 9, 2020, https:
//www.ftc.gov/news-events/news/press-releases/2020/12/ftc-sues-facebook-illegal-monopoli
zation.

2U.S. Department of Justice, “Justice Department Sues Apple for Monopolizing Smartphone Markets,”
March 21, 2024, https://www.justice.gov/archives/opa/gallery/justice-department-sues-apple-
monopolizing-smartphone-markets.

3Federal Trade Commission, “FTC Launches Inquiry into Generative AI Investments and Partnerships,”
January 25, 2024, https://www.ftc.gov/news-events/news/press-releases/2024/01/ftc-launches-
inquiry-generative-ai-investments-partnerships.

4Reuters, “Qualcomm Ends $44 Billion NXP Bid After Failing to Win China Approval,” July 26, 2018,
https://www.reuters.com/article/technology/qualcomm-ends-44-billion-nxp-bid-after-
failing-to-win-china-approval-idUSKBN1KF18X/.

5Regulation (EU) 2022/1925 of the European Parliament and of the Council of 14 September 2022 on
contestable and fair markets in the digital sector (Digital Markets Act), https://eur-lex.europa.eu/el
i/reg/2022/1925/oj.
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matches between targets and assignees in the U.S. patent data. This matching process
enables us to identify the specific technological areas defined by Cooperative Patent Classi-
fication (CPC) codes in which the acquired firm was active prior to the acquisition.

2.2 Patent Data

To characterize technological activity, we rely on data from the PatentsView database
(USPTO 2016). Specifically, we extract data on patent filings and grants, including applica-
tion years and Cooperative Patent Classification (CPC) codes. We also obtain information
on patent assignees, which allows us to link patents to the firm that holds the right at the
time of issuance.

Throughout the paper, we use CPC codes to group together patents in related technology
areas. The Cooperative Patent Classification system is a hierarchical system devised by the
US Patent and Trademark Office (USPTO) and the European Patent Office (EPO). The
main purpose of the CPC system is to facilitate prior art searches by patent examiners, so
the patents within a code correspond to similar technologies (though we would not go so far
as to argue that they constitute technology markets in the sense of having a similar level
of substitutability among patents). All US patents are assigned at least one primary CPC
code, and possibly several secondary codes. The system has over 250,000 distinct categories,
which allows for billions of possible combinations. Throughout this paper, we refer to the
six-digit main group associated with a patent’s primary CPC code as that patent’s “CPC
class.” There are 7,005 CPC classes in our data, and each class has an average 30.3 new
patent applications per year.

To focus our analysis on technology areas most relevant to the digital sector, we restrict
attention to patents classified under CPC sections G (Physics) and H (Electricity). These two
sections encompass the majority of innovation activity in information technology, software,
electronics, and telecommunications.6

2.3 Data on Employee Work Histories

We use data from Revelio Labs to analyze employee-level career trajectories before and af-
ter acquisition events. Revelio Labs aggregates publicly available resumes, primarily from
LinkedIn, to construct standardized longitudinal records of individuals’ employment histo-
ries. This dataset allows us to trace job transitions, employer affiliations, and role durations

6While this restriction excludes a small number of patents filed by acquirers or targets in our sample, it
screens out a large number of CPC classes that are never used by firms in our sample, and it dramatically
reduces computational burdens.
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at the individual level, making it particularly well-suited to study labor market dynamics
around acquisitions.

To link employees to acquired firms, we begin with our manually curated list of 1,190
startup acquisitions by the eight large technology firms in our sample. We search for exact
matches between target firm names and employer names in the Revelio data. Because Revelio
data is sourced largely from LinkedIn, which was founded in 2003, and because we require
pre-acquisition employment histories to evaluate changes over time, we limit the sample to
acquisitions occurring in 2005 or later. This restriction yields 932 acquisitions. Of these,
we can cleanly identify and verify 487 targets in the Revelio data through a combination
of name matching and manual validation. We similarly identify the acquiring firms in the
Revelio data. In doing so, we map not only to the parent acquirer entity but also include all
affiliated subsidiaries. For instance, positions listed at Instagram, DeepMind, or GitHub are
treated as positions at Facebook, Google, and Microsoft, respectively, after their respective
acquisition dates.

The resulting data provides a dynamic view of workforce changes surrounding acquisition
events, allowing us to estimate retention patterns, employee turnover, and the relationship
between post-acquisition integration and innovation outcomes. This labor market lens com-
plements our patent-based analyses and offers a more complete picture of the organizational
consequences of digital acquisitions.

2.4 Dataset Construction

Our empirical analysis uses two panel datasets. In the first dataset, each observation rep-
resents a unique technological field in a specific year. For each CPC-year combination, we
calculate the number of patent applications filed, identify whether an acquisition occurred
involving a target firm that had previously patented in that CPC group, and record which
of the eight focal technology firms carried out the acquisition. This structure allows us to
examine changes in innovation activity (measured by patenting intensity) before and after
acquisition events within the same technological area. In addition, it enables us to compare
treated CPC groups to those that were never subject to an acquisition, thereby facilitating
a difference-in-differences and event-study identification strategy.

We construct several variables to characterize the acquisition behavior of each firm and
the structure of innovation within each CPC group. These include indicators for whether
the acquirer had patented in the CPC group prior to the acquisition, whether the acqui-
sition represented the first such transaction in that technology area, and whether multiple
acquisitions occurred in the same CPC group over time. These variables allow us to explore

7



patterns of repeated acquisitions, the role of technological expertise, and the persistence of
innovation effects following a merger.

In the second panel, each observation represents a single patent in a given year. We
restrict the sample to patents in CPC groups that were affected by at least one acquisition,
and track whether each patent was filed by the acquired firm or a third-party. A key out-
come variable is the number of prior-art citations that a focal patent receives from other U.S.
patents. These forward citations are a widely used measure of the economic and technolog-
ical significance of the cited patent, and the panel structure allow us to trace the relative
importance of specific patents through time, before and after each acquisition event.

These two datasets provide a foundation for analyzing how acquisitions influence inno-
vation in targeted technology areas. By combining patent data with manually collected
acquisition records, we are able to track the timing, intensity, and nature of innovation —
at both the broad technology and the individual patent level — both before and after each
acquisition event. This structure enables us to evaluate the relationship between acquisition
activity and technological development with a relatively high degree of granularity.

3 Descriptive Statistics

3.1 Big Tech Acquisitions

Table 1 provides an overview of the acquisition activity by each of the eight major digital
firms included in our analysis, along with summary statistics on the patent holdings of their
targets. The first column shows the number of acquisitions for each acquirer in our sample.
The second shows that share of targets with at least one patent. For example, only 23% of
Amazon’s target have any patent at all, but if they do they have around 10 patents in four
different CPC groups on average. This means that for Amazon, on average, one acquisition
of a patent-holding target leads to 4 CPC-level “treatments” in the panel data analyses
described below. Comparing the various acquirers several patterns emerge. First, across
all acquirers, a substantial share of startup targets do not hold any patents at the time of
acquisition. The probability that an acquired firm holds at least one patent ranges from as
low as 17% for Facebook to as high as 70% for Qualcomm. This heterogeneity likely reflects
differences in acquisition strategies, with some firms (particularly those in semiconductors
and hardware-intensive sectors) placing greater emphasis on acquiring patented technologies.

Second, conditional on acquiring a target with patents, the average number of patents also
varies across firms. Intel and Qualcomm stand out with average target portfolios exceeding
20 patents per acquisition. These targets also span a wider technological scope, as indicated
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Table 1: Number of targets, patents acquired, and retention rates by each company

Company #Acquisitions Pr(AnyPatent) #Patents #CPC #CPC (G&H) RR 3y RR 5y RGap 3y

Amazon 103 0.23 10.38 4.17 3.04 0.39 0.32 0.34
Apple 126 0.36 16.44 4.93 4.22 0.53 0.47 0.25
Cisco 222 0.35 12.17 4.12 3.91 0.49 0.35 0.19
Facebook 102 0.17 3.71 2.29 2.12 0.44 0.32 0.53
Google 260 0.24 13.24 3.16 2.76 0.42 0.33 0.45
Intel 97 0.57 21.40 7.38 7.07 0.44 0.34 0.30
Microsoft 236 0.31 14.74 4.12 3.95 0.43 0.32 0.26
Qualcomm 44 0.70 20.74 7.61 7.35 0.50 0.40 0.31

Notes: RR 3y denotes the employee retention rate 3 years post-acquisition and RR 5y denotes the employee retention rate 5 years post-
acquisition.
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by the number of distinct CPC codes associated with their patents. In contrast, targets
acquired by Facebook and Amazon typically have smaller patent portfolios and fewer CPC
categories, suggesting a focus on capabilities beyond formal intellectual property such as
talent, products, or user data.

The next column of Table 1 reports the average number of G- and H-class CPC codes
per patent-holding acquisition. These CPC sections (Physics and Electricity, respectively)
account for the bulk of digital and information technology innovation. The similarity between
the average total CPC codes and G&H-specific CPC codes suggests that most patent-relevant
acquisitions in our sample are concentrated within these core technological domains. As a
result, our subsequent restriction of the analysis to G&H CPC codes represents a minor but
targeted refinement of the full sample.

The last three columns in Table 1 provide descriptive statistics on post-acquisition re-
tention of employees from the acquired firm. On average, around 50 percent of employees
have left the acquirer by three years after the merger, and roughly two-thirds have departed
within 5 years. The Retention Gap statistic in the final column is the difference in retention
rate between employees of the acquired firm, and the retention rates for a matched sample
of other employees who joined the acquiring firm in the same year, over a three-year period.
Interestingly, the Retention Gap varies across acquirers by more than the retention rate,
which suggests substantial differences in the underlying job separation rate at these large
digital firms.

Overall, the data in Table 1 highlight the diversity of acquisition patterns across large
digital firms and underscore the importance of distinguishing between acquisitions of patent-
rich and patent-poor targets. These patterns also motivate our event-study approach, which
tracks innovation outcomes in narrowly defined technological fields before and after acquisi-
tion events.

Table 2 reports average deal values (in millions of USD) for acquisitions by each of
the eight focal technology firms, separately for targets with and without patent holdings.
The results reveal a clear pattern: across nearly all firms, acquisitions of patent-holding
targets are associated with substantially larger transaction values. These findings reinforce
the importance of distinguishing between acquisitions that involve patented innovation and
those that do not. They also suggest that while many acquisitions are motivated by access
to capabilities or personnel, patents remain a key driver of valuation and strategic interest
for most big tech acquirers.

For instance, Apple paid roughly eight times more for the median patent-holding target
($239 million) than for the median target without patents ($30 million). Similarly, Google’s
median deal size increases from $61 million to $500 million when the target holds patents.
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Table 2: Median deal values (in millions of USD)

Company Targets without patents Targets with patents

Amazon 86 300

Apple 30 239

Cisco 126 282

Facebook 40 300

Google 61 500

Intel 163 250

Microsoft 128 200

Qualcomm 26 190

Total 100 259

This suggests that patent holdings may serve as a signal of technological quality, maturity,
or strategic value, especially in software-oriented acquisitions. Even for firms like Intel and
Qualcomm which tend to operate in patent-intensive domains, deal values are markedly
higher when patents are present.

Figure 1 illustrates the temporal distribution of startup acquisitions by the eight focal
technology firms over the sample period. The figure serves two key purposes. First, it
documents the overall volume and dynamics of acquisition activity across years. Second, it
provides visual context for understanding the timing of treatment events in our event-study
framework.

The data show that acquisition activity is unevenly distributed over time, with noticeable
peaks in certain years. These surges often coincide with broader trends in the technology
sector, such as funding booms, IPO droughts, or platform expansion phases. For example,
there is a pronounced increase in acquisition activity during the early 2010s, which corre-
sponds to a period of aggressive growth by firms like Google, Facebook, and Amazon. The
observed variation in acquisition timing underscores the need to control for year fixed ef-
fects in our empirical specifications. It also highlights the importance of matching treated
and untreated technological areas based on pre-trends in innovation, as different cohorts of
acquisitions may have been subject to distinct macroeconomic or regulatory conditions.

3.2 Acquired Patent CPC Codes

From this point forward, we restrict our analysis to 1,269 CPC codes within sections G
(Physics) and H (Electricity). This restriction is analytically useful because it concentrates
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Figure 1: Acquisition Time Trends

our attention on core technology areas most relevant to the digital economy, including elec-
tronics, telecommunications, and software.7 In total, 302 distinct G&H CPC codes are
affected by at least one acquisition in our sample. Among these treated CPC groups, ap-
proximately 38% experience only a single acquisition event, while the remaining 62% are
treated multiple times, reflecting repeated acquisition activity within the same technologi-
cal field. This recurrence suggests that certain technology areas serve as ongoing targets of
strategic interest for digital incumbents.

Figure 2 provides a histogram of the number of acquisition events in each CPC code,
conditional on the group being “treated” at least once. The distribution is highly skewed:
while many CPC codes experience only one or two acquisition events, a non-negligible number
of technology areas are affected repeatedly, with some codes seeing as many as ten or more
acquisitions over the sample period. This pattern highlights the importance of investigating
repeated treatments and motivates our exploration of acquisition waves and persistent effects

7As shown earlier in Table 1, this focus does not meaningfully reduce the breadth of our sample. The
average number of G&H CPC codes affected per acquisition is very similar to the average across all CPC
codes, indicating that most patent-relevant startup acquisitions already fall within these sections.
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Figure 2: Number of acquisitions in treated CPC codes

on innovation within technological domains.
Table 3 examines the technological experience of each acquirer at the time of their first

acquisition within a given CPC code. For each firm, we report the number of such first-time
acquisition events, the number of cases in which the acquirer had previously patented in the
same CPC group, and the share of total patents held by the acquirer within those groups.

Table 3: Previous patent experience for ACQUIRERS’ first acquisitions in CPC

Company # Events # Prev. patent Patent share Min Max

Amazon 50 44 0.0060 0.0001 0.0264

Apple 107 99 0.0096 0.0001 0.0855

Cisco 100 82 0.0097 0.0000 0.0762

Facebook 23 20 0.0040 0.0002 0.0292

Google 97 89 0.0070 0.0002 0.0447

Intel 177 167 0.0223 0.0006 0.1545

Microsoft 103 98 0.0260 0.0003 0.1482

Qualcomm 133 123 0.0170 0.0001 0.1200

The data reveal that acquirers frequently enter a CPC group with a foundation of prior
patenting activity. For example, Intel had prior patents in 167 out of 177 first-time acquisi-
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tions, and Microsoft had prior patents in 98 of 103 cases. Even for acquirers more typically
associated with software and platform services (e.g., Google and Apple) there is a strong
tendency to acquire in domains where they already hold intellectual property.

The final three columns of Table 3 report the average share of patents in each CPC group
that are held by the acquirer prior to the acquisition, along with the minimum and maximum
values of this share across CPC groups. These shares are generally small in absolute terms
(often below 3%), but they vary meaningfully across firms. Microsoft and Intel exhibit
particularly high average shares, suggesting more entrenched innovation activity within the
technological domains they target. At the other end of the spectrum, Amazon and Facebook
tend to have lower pre-acquisition shares, consistent with a more exploratory or externally
driven innovation strategy.

3.3 Repeated Acquisitions

Since the majority of affected CPC groups experience multiple acquisition events, it is in-
formative to examine the structure and sequence of these acquisition waves. Table 4 reports
transition probabilities for acquisition events. It provides a descriptive foundation for un-
derstanding how acquisition events cluster within technological domains and motivates our
empirical focus on acquisition waves and their implications for post-merger innovation.

Specifically, for each acquirer, we document the probability that an acquisition event is
either not followed by any further acquisition in the same CPC group (column “None”) or is
followed by an acquisition by one of the other focal firms. We also report the total number of
such acquisition events. Note that the unit of observation is not the number of acquisitions
but acquisition-CPC group pairs. Thus, a single acquisition spanning multiple CPC groups
can contribute multiple events.

Table 4: Conditional probabilities of follow-on acquisitions

#Events None Amazon Apple Cisco Facebook Google Intel Microsoft Qualcomm

Amazon 31 0.48 0.10 0.19 0.10 0.00 0.06 0.26 0.19 0.06

Apple 90 0.32 0.07 0.19 0.12 0.03 0.11 0.26 0.09 0.08

Cisco 91 0.19 0.05 0.05 0.36 0.00 0.11 0.40 0.30 0.32

Facebook 13 0.08 0.08 0.15 0.38 0.15 0.15 0.00 0.38 0.31

Google 85 0.58 0.08 0.08 0.07 0.01 0.11 0.12 0.15 0.08

Intel 168 0.28 0.05 0.20 0.19 0.04 0.12 0.25 0.14 0.23

Microsoft 91 0.21 0.09 0.16 0.22 0.08 0.19 0.32 0.24 0.10

Qualcomm 107 0.27 0.03 0.10 0.24 0.00 0.08 0.31 0.16 0.23

Multiple 83 0.16 0.18 0.23 0.37 0.10 0.22 0.51 0.30 0.24
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Figure 3: Years to next acquisition within same CPC group

The row labeled “Multiple” summarizes transition probabilities in cases where multiple
acquirers make acquisitions in the same CPC group in the same year. These simultaneous
events are relatively common and may indicate areas of heightened strategic interest or over-
lapping innovation trajectories. In these cases, Intel and Microsoft are the most likely firms
to appear as follow-on acquirers, again pointing to their broad and sustained involvement
across many technology domains.

Several additional insights emerge. First, firms differ markedly in the likelihood that
an acquisition event is followed by another in the same CPC group. For example, 58%
of Google’s events and 48% of Amazon’s are not followed by any subsequent acquisition,
while Cisco and Microsoft are much more likely to engage in repeated activity. Second,
follow-on acquisitions often come from the same firm, but not always. Some firms (e.g.,
Intel) frequently acquire in CPC groups where other firms have already made acquisitions,
suggesting either shared interests in certain technologies or strategic responses to rivals’
moves.

Figure 3 presents a histogram of the number of years between successive acquisition events
within the same CPC group, conditional on a follow-on acquisition occurring. The figure
captures the temporal clustering of acquisitions and helps to characterize the dynamics of
repeated activity within a technological domain. The distribution is highly skewed toward
short intervals between events. More than 40% of acquisitions are followed by another
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Table 5: Follow-on Acquisition and Wave Positions by Experience

Experience # Events No follow-on acq First in acq wave Last in acq wave Mid in acq wave

No 69 0.43 0.27 0.13 0.18

Yes 722 0.10 0.19 0.14 0.56

acquisition in the same CPC group within the same calendar year, typically by a different
firm. Additionally, over 20% of acquisition events are followed by another within just one
year. These short intervals suggest that certain CPC groups experience concentrated bursts
of acquisition activity, which may reflect heightened competitive interest or simultaneous
recognition of strategic value across multiple firms.8

Table 5 examines how an acquirer’s prior patenting experience in a CPC group relates to
the likelihood of follow-on acquisitions in that same technological domain. The results reveal
a striking pattern: when the acquirer had already patented in the CPC group before the
acquisition, 90% of first acquisitions are followed by additional acquisitions in that group. By
contrast, when the acquirer had no prior experience in the CPC group, the first acquisition is
much more likely to be an isolated event. Acquirers with established technological footholds
are more likely to pursue sustained engagement in the same area, potentially reflecting greater
absorptive capacity or strategic commitment. In contrast, firms entering unfamiliar domains
may treat the acquisition as exploratory or one-off, with fewer follow-up investments.

3.4 Employee Retention

Our final set of descriptive statistic focus on employee retention. For this analysis, we
construct an unbalanced panel of employee position-year observations in a five-year window
around the acquisition event (from two years before through two years after). To avoid
double counting overlapping positions, we attribute the year of a transition to the new
position rather than splitting the year. Job stints that begin and end in the same calendar
year are excluded to reduce noise from short-term or uncertain employment records. In cases
where a resume includes both a private-sector job and an academic or educational affiliation
in the same year, we retain only the private-sector position. However, an individual may still
hold multiple job positions across different firms in the same year if the data clearly indicate
distinct roles.

8Figure A.7 in the appendix further explores the distribution of time between acquisition events by
truncating the range to a maximum of six years. The shape of the distribution remains similar, with a large
share of events clustered in the first two years. This robustness check supports our decision to model early
follow-on acquisitions as part of a common post-treatment dynamic.
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Figure 4: Retention Rates: Targets vs. Acquirer Employees with Similar Tenure Profiles

Figure 4 plots employee retention rates for workers employed at the target firm in the year
prior to acquisition. We compare these retention outcomes to a matched sample of employees
from the acquiring firm, constructed to have similar tenure profiles at baseline. Specifically,
for each target employee in our sample, we identify an employee from the acquirer who began
working there in the same year the target employee started at their organization. We focus on
employees that work for the acquirer directly and exclude any subsidiaries that were targets
in past acquisitions. If multiple acquirer employees meet this criterion, we select one at
random to serve as the control employee. This matching approach helps isolate differences
in post-acquisition retention patterns that are attributable to the acquisition event itself,
rather than to career stage or job tenure.

The horizontal axis shows years relative to the acquisition date, while the vertical axis
measures the share of employees who remain at their original employer in each relative year.
The figure reveals a stark divergence in retention dynamics following the acquisition. While
retention among matched acquirer employees declines, retention among target firm employees
falls much more sharply starting in the year of acquisition and continues to fall in subsequent
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years.
Specifically, target employees experience a steep drop in retention in the first year after

the deal, with roughly 40% leaving their employer within a year. By three years after the
acquisition, cumulative attrition exceeds 60%, suggesting significant turnover among the
acquired workforce. In contrast, the matched acquirer employees display a much flatter
retention curve, with less than half as much attrition over the same time window.9

These patterns highlight the fragility of talent retention in the wake of technology (startup)
acquisitions. Despite the strategic importance of acquiring human capital in technology
deals, the evidence suggests that much of the target firm’s workforce departs after acquisi-
tion events.

4 Results

4.1 CPC Group Level Analysis

We first examine how patenting activity within specific technological fields (defined by CPC
groups) responds to acquisitions by large digital firms. By leveraging the granularity of CPC-
by-year data, we trace innovation dynamics around acquisition events and assess whether
these transactions coincide with shifts in the rate of innovation.

4.1.1 Baseline Event Study

The goal of this section is to estimate how patenting activity within a technological domain
evolves before and after an acquisition by a large digital firm. By organizing the data at the
CPC group-year level, we can track how innovation trends shift in response to a treatment
event, which we define as an acquisition in which the target had previously filed patents in
that CPC group.

Our primary outcome variable, lpatct, is the arcsin transformation of the total number of
patents filed in CPC class c in year t. Our baseline specification to evaluate the innovation
trend in a technological area after a startup acquisition is as follows:

lpatct = α + γc + λt +
10∑

s=−10

τs × dc,t=y+s + ϵct (1)

9Figure A.10 in the appendix shows that this retention pattern is broadly consistent across all eight
acquiring firms in our sample. While there is some variation in the level and slope of post-acquisition
attrition (with Cisco exhibiting the highest overall retention) every acquirer displays a substantial decline in
target employee retention following the acquisition.
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where γc are CPC group fixed effects and λt are calendar-year fixed effects. The indicator
variable dc,t=y+s is set equal to one s years after a digital merger happened in calendar-year
y in CPC category c, and τs are respective coefficients (which can be interpreted as the
percentage change in patent filings). We treat multiple acquisitions occurring in the same
CPC group and year as a single treatment event at the CPC-year level. This approach helps
to avoid double-counting and simplifies the structure of the event-study analysis while still
capturing the cumulative impact of overlapping acquisitions.

The event-study specification in Equation 1 captures the dynamic treatment effects by
comparing each year relative to the acquisition event to a baseline year, while controlling for
both CPC group and calendar year fixed effects.

First, note that we may have multiple treatment events per CPC group. There is no
established approach on how to deal with this. We start by focusing on the first treatment
event, and differentiate the post-treatment trend by whether a follow-on event happens and
how many. We then consider a regression specification, where we combine dummies for the
first, second, and so on treatment events.

Second, we should elaborate on the implicit control group in the above specification. The
overall sample includes CPC groups without any treatment event, and as such our event
study specification can be considered as a hybrid approach: we exploit the various event
times as well as the comparison to untreated CPC groups. In general, event study analyses
have been found to be potentially biased, with robust estimators suggested by Callaway and
Sant’Anna (2021) and Sun and Abraham (2021). Since our sample includes a large group
of untreated CPC groups, we have found that our simpler specification yields near-identical
results to the state-of-the-art estimators.10

Figure 5 presents the estimated event-study coefficients τs for the effect of acquisitions on
total patenting within treated CPC groups shown in equation (1).11 Panel (a) uses a pooled
specification that considers the first acquisition in each CPC group as the treatment event
and estimates a single set of pre- and post-treatment effects. The results reveal a marked
upward trend in patenting before the acquisition, followed by continued growth afterward.

Panel (b) disaggregates the post-treatment effects by the number of follow-on acquisitions
that occur in the same CPC group. This specification shows that patenting accelerates in
areas with more follow-on acquisitions. In contrast, groups with only one or two follow-on
acquisitions remain on trend, and patenting declines (relative to CPC codes without acqui-
sitions) in trated CPC codes that see no further acquisition activity. This pattern suggests

10It might be interesting to explore the differences in outcomes to a conventional event study with only
treated units as mentioned by Miller (2023).

11Graphs by acquirer can be found in Appendix A.
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Figure 5: Outcome: all patents within treated CPC codes, First acquisitions within CPC
group

(a) Common pre- and post-trend (b) Heterogenous post-trend by # of follow-on acq

that innovation tends to rise most strongly in technological areas where digital incumbents
continue to make complementary acquisitions, possibly reflecting ongoing strategic invest-
ment.

At the same time, both panels reveal strong pre-trends, with patenting activity already
increasing in the years leading up to the first acquisition. This implies that acquisitions
are not randomly assigned across CPC groups but are more likely to occur in areas with
accelerating innovation. These pre-trends complicate a causal interpretation.

The presence of strong pre-trends in Figure 5 raises concerns about selection bias: ac-
quisitions tend to occur in CPC groups that are already experiencing rising innovation.
To better isolate the effect of acquisitions, we next implement a matching approach that
pairs treated CPC groups with observationally similar but untreated groups based on pre-
treatment patent growth. This allows us to construct a more credible counterfactual and
assess whether the observed post-acquisition patterns persist when comparing more closely
aligned trajectories.

4.1.2 Event Study with Matched Controls

The preceding analysis relied on untreated CPC groups as a general control group. However,
CPC groups that were never affected by an acquisition may differ systematically from those
that were, especially in terms of pre-treatment innovation trends. To address this concern,
we construct a more comparable control group using nearest-neighbor matching based on
pre-acquisition patent growth, number of patent applications and the acquisition year.

Specifically, we estimate the propensity score for experiencing a first acquisition event
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Table 6: Patent numbers and growth rate treated versus matched control CPC groups

(1) (2) (3) (4) (5)
Treated Untreated (2)− (1) Matched (4)− (1)
Mean Mean b Mean b

Growth rate 0.09 -0.03 -0.11∗∗∗ 0.08 -0.01
Patent count by application date 255.75 27.17 -228.59∗∗∗ 246.25 -9.50

Observations 275 27040 27315 275 550

based on the growth rate in the year prior to the first acquisition and the total number of
patent applications in the CPC group. For each treated CPC group, we identify the untreated
CPC group with the closest propensity score and use it as a control group. We then assign a
pseudo-event year to the matched control group that aligns with the corresponding treated
group’s acquisition year. When multiple treated CPC groups are matched to the same
untreated group, the control observation is duplicated, and each copy inherits the respective
event time. We retain only these matched pairs (i.e., treated and matched controls) in the
estimation sample. This matching strategy helps ensure that treatment and control groups
follow similar trends before the acquisition event, and are of similar size, allowing for a more
credible comparison of post-acquisition outcomes.

Table 6 reports summary statistics for treated, unmatched untreated, and matched un-
treated CPC groups. The goal is to assess how well the matched control groups resemble
treated groups along key pre-treatment dimensions. Column (1) shows the average patent
growth rate in the year before acquisition and total number of patents for treated CPC
groups. Column (2) presents the same statistics for all untreated CPC groups, while col-
umn (4) restricts the comparison to the matched subset. Columns (3) and (5) report the
differences between treated and untreated groups for the unmatched and matched samples,
respectively.

The unmatched untreated CPC groups exhibit substantially lower growth rates and much
smaller patent counts than the treated groups, with large and statistically significant dif-
ferences. By contrast, the matched control groups closely resemble treated CPC groups in
terms of pre-acquisition growth, with no significant difference in trends, and total appli-
cation numbers in the year of acquisition. These comparisons confirm that the matching
procedure effectively balances pre-treatment trends and helps to construct a more credible
control group for the event study analysis.
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Figure 6: Matched event study; All first acquisition events

(a) Common pre- and post-trend (b) Heterogenous post-trend by # of follow-on acq

After this matching procedure we run the following regression

lpatct = α + γc + λt +
10∑

s=−10

νs × dt=y+s +
10∑

s=−10

τs × dc,t=y+s + ϵct (2)

where γc are CPC group fixed effects and γt are year fixed effects. The indicator variable
dt=y+s equals one for both the treated and matched control CPC groups s years after a
digital merger happened (with νs as the corresponding coefficient). The indicator variable
dc,y=t+s equals one for only the treated CPC category c. The coefficients of interest are the
various τs. Each τs quantifies how treated CPC groups differ s years after the acquisition
event compared to the matched control group. Since we matched on pre-acquisition patent
growth, there should be no significant difference before the acquisition, at least for the five
years on which we based our matching.

In line with our previous unmatched analysis of acquisition events, we investigate how
innovation trends in treated and control CPC groups compare, differentiating by whether and
how many follow-on acquisitions occur in a given CPC group. Figure 6 plots the estimated
coefficients τs from the matched event study design. Panel (a) considers all first acquisition
events and estimates a common post-treatment effect, assuming homogeneous responses
across CPC groups. Panel (b) relaxes this assumption and estimates separate post-treatment
trends based on the number of follow-on acquisitions observed in each group.

To ensure that matching is based on comparable pre-treatment dynamics, we restrict the
sample to CPC groups with at least five years of data prior to the first acquisition. This
requirement reduces the number of treated events to 220, excluding 82 events that occurred
before the year 2000.
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Table 7: Innovation Heterogeneity by Number of Events

(1) (2)
Unmatched Matched sample

Post 1st Event 0.24∗∗∗ -0.03
(0.06) (0.07)

Post 2nd Event 0.24∗∗∗ 0.25∗∗
(0.06) (0.09)

Post 3rd Event 0.13∗ 0.23∗∗
(0.07) (0.08)

Post 4th Event 0.16∗ 0.19∗
(0.08) (0.09)

Constant 2.75∗∗∗ 4.40∗∗∗
(0.02) (0.04)

CPC FE yes yes
Year FE yes yes
Adj. R2 0.12 0.25
N 34236 11880
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

As expected, the use of matched control groups eliminates the strong pre-trends observed
in the unmatched analysis, indicating improved balance between treated and control CPC
groups. Post-acquisition, the results show clear heterogeneity: CPC groups with multiple
follow-on acquisitions experience significantly larger increases in patenting, suggesting a sus-
tained innovation response. By contrast, CPC groups with only a single acquisition show no
statistically significant post-treatment effect. This pattern reinforces the idea that follow-on
acquisitions are associated with more persistent investment and innovation activity in the
targeted technology space.

The matched event study in Figure 6 highlights the importance of accounting for the
intensity of acquisition activity when evaluating post-treatment innovation effects. To further
quantify this relationship, we turn to a difference-in-differences specification that estimates
the impact of successive acquisitions within a CPC group. This approach allows us to move
beyond event-time dynamics and directly assess how the cumulative number of acquisitions
shapes innovation outcomes over time.
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Specifically, we estimate the following regression specification:

lpatct = α + γc + λt +
∑

k∈{1,2,3,4}

τk ∗ 1t>=kthEvent + ϵct (3)

Table 7 presents results from a difference-in-differences regression that estimates how the
effect of acquisitions on patenting varies with the number of acquisition events within a CPC
group. The specification in equation 3 includes separate indicators for whether a CPC group
is in a period following its first, second, third, or fourth acquisition event. The coefficients
τk capture the average change in patenting activity associated with each level of cumulative
treatment intensity.

The results are shown for both the unmatched sample and the matched sample based
on pre-treatment growth trends. In both cases, the pattern is consistent: patenting activity
increases more strongly in CPC groups that experience repeated acquisitions. For exam-
ple, in the matched sample, the patenting activity increases by roughly 13% following the
first acquisition, another 31% after the second, an additional 25% after the third, and 24%
after the fourth. These coefficients are statistically significant and suggest that continued
acquisition activity is associated with sustained or even compounding innovation effects.
The results provide further evidence that follow-on acquisitions are not merely coincidental
but may reflect strategic investment in technological domains that are already experiencing
innovation growth.

The analysis so far has focused on changes in the quantity of innovation (measured by
patent application counts) at the CPC group level. While this provides important evidence
on the volume of innovative activity following acquisitions, it does not speak to the quality,
influence, or diffusion of the acquired patents. To address these dimensions, we now turn to
citation-based measures, which offer a complementary perspective for evaluating the impact
of acquisitions on technological significance and spillovers.

4.2 Patent Citation Analysis

In this section, we shift our focus (and unit of analysis) from the CPC group or technology
area to the individual patent. Thus, instead of examining the impacts of an acquisition on
overall innovation, we focus on the diffusion and impact of acquired technology.

4.2.1 Impact of Acquisitions on Acquired Patents

Our main patent level outcome, citpct, is a count of forward citations to focal patent p, with
primary CPC group c, in year t. Citations have been used extensively as a proxy for the
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technological significance, economic value, and cumulative innovation.
To examine the impact of acquisitions on the importance of acquired patents, we use a

set of regressions that closely resemble those in Rysman and Simcoe (2008). Specifically, we
analyze how the citation rate changes following acquisitions using the following models:

citpct = α + τPostAcquisitionpt + Acquiredp + i.agept + λct + ϵpct (4)

citpct = α + τPostAcquisitionpt + age2pt + age3pt + γp + λct + ϵpct (5)

citpct = α +
10∑

s=−10

τs · dp,t=y+s + age2pt + age3pt + γp + λct + ϵpct (6)

The first specification of equation (4) is a pooled cross sectional model that includes
an indicator, Acquiredp, for patents owned by the target firm; the diff-in-diff coefficient,
PostAcquisitionpt, which equals one for acquired patents after the acquisition occurs; a full
set of patent-age effects (where age is calculated relative to grant year) to capture the typical
citation life-cycle; and a set of CPC-group by year fixed effects, λct, that capture aggregate
time-trends.

In equation (5), we introduce patent fixed effects γp, which absorb time-invariant differ-
ences in patent quality. Because these patent fixed effects also create a potential age-year-
cohort co-linearity problem, however, we switch from using age dummies to a pair of terms,
age2pt and age3pt, that capture the non-linear component of the underlying citation age pro-
file. Finally, equation (6) implements an event-study specification, similar to our CPC-year
analysis above, that estimates a full set of dynamic treatment effects τs.12

Table 8 presents the results from the baseline citation regressions described in speci-
fications (4) and (5), using other patents in treated CPC groups as the control group.13

Standard errors are clustered at the patent level. Column (1) corresponds to a specification
with CPC-year fixed effects and a treatment indicator Acquiredp, while column (2) replaces
the treatment dummy with patent fixed effects to account for time-invariant differences in
patent quality and visibility. Both specifications include controls for patent age.

The key variable of interest, PostAcquisitionpt, is a dummy equal to one in all years after
the acquisition of the patent’s parent firm. The coefficient on this variable is positive and
highly significant in both specifications, indicating that patents filed by acquired firms receive

12To clarify the structure of our citation-level analysis, Section A.1 in the appendix shows and discusses
the distribution of treated patents by event year relative to acquisition. In particular, it highlights how
our identification relies on a balanced panel of patent-year observations concentrated around the acquisition
date.

13In Section A.2 in the appendix, we report robustness checks using alternative control groups, including
all patents in G and H, patents in untreated CPC groups, and patents assigned to the acquirer.
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Table 8: Diff-in-Diff Estimates of Acquisition Impact on Patent Cites

(1) (2) (3) (4) (5) (6)
#Citations #Citations #Citations #Citations #NonSelfCit #PatFamCit

PostAcquisition 1.10∗∗∗ 1.13∗∗∗ 0.80∗∗∗ 0.89∗∗∗ 0.85∗∗∗ 0.43∗∗∗
(0.10) (0.09) (0.10) (0.10) (0.08) (0.06)

Acquired 0.54∗∗∗ 0.52∗∗∗
(0.05) (0.05)

Post×FirstNoFollowon 0.43 0.56
(0.45) (0.42)

Post×FirstFollowon 2.15∗∗∗ 1.71∗∗
(0.58) (0.54)

CPC × Year FE yes yes yes yes yes yes
Patent ID FE no yes no yes yes yes
Age FE yes no yes no no no
Age2, Age3 no yes no yes yes yes
Adj. R2 0.05 0.42 0.05 0.42 0.42 0.32
Avg. Outcome 0.80 0.80 0.80 0.80 0.80 0.48
N 44250965 44250965 44250965 44250965 44250965 44250965
Standard errors in parentheses. Column (3) includes main effects of First and Followon.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

significantly more citations in the years following the acquisition. In column (1), the post-
acquisition effect is approximately 1.10 additional citations per year, which corresponds to a
138 percent increase in the mean citation rate. In column (2), which includes more stringent
fixed effects, the effect remains strong at 1.13 citations. The coefficient on Acquiredp in
column (1) indicates that the patents of acquired startups have a 67 percent higher citation
rate than other patents in the CPC classes before the acquisition. This suggests that acquired
patents are both more important to begin with, and see a large boost in their visibility and
significance following an acquisition.

The results in Table 8 provide compelling evidence that acquisitions are followed by a
marked increase in the visibility and influence of the acquired firm’s patents. Since the
comparison group is composed of other patents in the same CPC groups, these results are
not driven by broad shifts in technological fields, but rather reflect changes specific to the
acquired targets. This pattern is consistent with improved dissemination, commercialization,
or reuse of the acquired knowledge, and suggests that acquisitions by digital incumbents may
facilitate rather than suppress post-merger innovation spillovers.

Figure 7 depicts the estimated τs coefficients from the event-study specification (6). The
specification includes patent fixed effects, CPC-year fixed effects, and controls for patent age
(in quadratic and cubic form), and uses other patents in treated CPC groups as the control
group. The event time s indexes years relative to the acquisition of the patent’s parent firm,
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Figure 7: Event study: Application versus Grant Year Cites

(a) Application year citations (b) Grant year citations

with s = 0 corresponding to the acquisition year.
In both panels of Figure 7, we observe a clear and sustained increase in citations to

acquired patents following the acquisition. The magnitude of this effect is approximately
one additional citation per year relative to pre-acquisition levels, or a doubling of the baseline
citation rate. This is broadly consistent with the difference-in-differences results in Table 8,
and supports the idea that acquisitions by large digital firms may amplify the diffusion of
acquired innovations, rather than curtailing their impact.

The difference between the two panels in Figure 7 is driven by an assumption about
citation timing. Panel (a) assigns forward citations to the application-year of the citing
patent, and panel (b) assigns citations to the year when the citing patent is granted. The
convention in the innovation literature is to assign cites to the application-year, based on
the idea that this approximates the moment when an inventor utilized her knowledge of the
prior art. This inevitably creates some measurement error, however, because citations can
be added (by either the applicant or the examiner) during the examination process. If these
“in process” citations are caused by an intervening event — such as the acquisition of the
firm that filed the cited patent — it may be more appropriate to assign citations to the
grant-year, as we do in panel (b).

While both panels in Figure 7 show an increase in the citation rate around the year of
acquisition, the pattern of the dynamic treatment effects differs under the alternative timing
assumptions. In panel (a), when forward cites are assigned to the citing patent’s application-
year, we observe an increase in the citation rate during the five-year period before the
acquisition, followed by a sharp acceleration in the year of acquisition, and then a leveling-
off at a higher rate over the next decade. In panel (b), when forward cites are assigned to
the grant-year, the difference in pre-acquisition trends disappears for the three-years before
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acquisition, and the dynamic treatment effects exhibit a larger and more sustained increase
over the post-acquisition years.14

The difference between the two graphs is consistent with the idea that the differential
“pre trend” in panel (a) is caused by citations that arrive during the prosecution process
(potentially as a consequence of the acquisition itself). Thus, we interpret the timing of the
citation increase in panel (a), along with the disappearance of the pre-trend in Panel (b),
as evidence that supports a causal interpretation of our diff-in-diff estimates. Of course, a
more skeptical reader might treat them, instead, as descriptive estimates that capture both
selection and treatment effects. Going forward, we we follow the convention in the literature
and assign citations to the application year of the citing patent.

4.2.2 Patent Citation Heterogeneity by Acquisition Sequence

While the average increase in citations suggests that acquisitions can enhance the impact
of acquired innovations, this effect may vary depending on the context and sequence of ac-
quisitions. In particular, we explore whether citation dynamics differ between first-acquired
targets within a CPC group and those acquired later, and whether the presence of follow-on
acquisitions amplifies or moderates these effects. This analysis helps to uncover whether
the timing and positioning of an acquisition within a broader strategy shapes the extent to
which innovation spillovers materialize.

Columns (3) and (4) in Table 8 present estimates from specifications (4) and (5), where we
examine whether the citation effects of acquisitions differ depending on whether the patent
belongs to the first acquired target within a CPC group or to a later target. The sample
is split accordingly, and we further distinguish between cases where there were follow-on
acquisitions and those where there were none. The control group in all regressions remains
all other patents in treated CPC groups.

The interaction term Post×FirstNoFollowon captures the effect of an acquisition on
patent citations for the first acquired target within a CPC group, conditional on there being
no subsequent acquisitions in that group. Similarly, Post×FirstFollowon measures the post-
acquisition citation effect for patents of the first target when there is a follow-on acquisition
within the same CPC group. Finally, the coefficient on PostAcquisition represents the effect
for patents associated with later acquisition events, that is, targets acquired after an earlier
acquisition has already occurred in the CPC group.

The results reveal notable heterogeneity. Patents owned by first-acquired targets in
CPC groups that subsequently experience additional acquisitions show a particularly strong

14Panel (b) still shows a differential trend over the longer 10-year pre-acquisition window, but it is impor-
tant to recognize that the composition of the sample is also shifting over that longer period (see Figure A.1).
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Figure 8: Patents of first targets within CPC group

post-acquisition increase in citations. This suggests that early movers in acquisition waves
may benefit from greater organizational attention or resource integration, which in turn
enhances the diffusion of their innovations. In contrast, patents associated with isolated
acquisitions (i.e., those not followed by further deals) show smaller or insignificant citation
effects, consistent with a more limited post-merger innovation impact. Later-acquired targets
also exhibit positive post-acquisition citation effects, though generally smaller in magnitude
compared to first-acquired firms in multi-acquisition CPC groups.

These findings suggest that the strategic sequencing of acquisitions matters for innovation
outcomes. First acquisitions in an area that becomes the focus of sustained follow-on activity
appear to generate the strongest citation-based spillovers.

Figures 8 and 9 display the estimated τs coefficients from the event-study specification (6),
separately for patents of first-acquired and later-acquired targets within a CPC group. These
figures provide a dynamic view of how the timing of acquisition within a technological domain
affects the post-merger trajectory of innovation impact, as measured by forward citations.

Figure 8 focuses on patents belonging to the first target acquired within each CPC group.
The event-study profile shows little movement in citations prior to the acquisition, followed
by a pronounced and persistent increase beginning shortly after the acquisition year. The
sharp and sustained post-treatment rise in citations suggests that first-acquired targets often
experience a meaningful boost in the visibility and influence of their innovations. This effect
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Figure 9: Patents of later targets within CPC group

is particularly strong in CPC groups that go on to experience follow-on acquisitions.
In contrast, Figure 9 plots the citation dynamics for patents of later-acquired targets.

Here, the post-acquisition increase in citations is more muted and less sustained. While
there is some upward movement following the acquisition year, the magnitude of the effect
is smaller, and the confidence intervals are wider, especially in later years. These patterns
suggest that later acquisitions may receive less organizational focus or integration effort, or
may be motivated by defensive rather than developmental aims.

4.2.3 Mechanisms for the Citation Impact of Acquisitions

The preceding analysis documents a substantial post-acquisition increase in citations to the
acquired firm’s patents. But who is responsible for these additional citations? Do they
reflect broader knowledge diffusion and technological spillovers, or are they primarily driven
by increased internal use within the acquiring firm?

Figure 10 sheds light on these questions by showing how the share of total citations at-
tributable to the acquiring firm evolves around the acquisition event. Specifically, it plots the
fraction of all forward citations that originate from patents assigned to the acquirer, relative
to the event year. The figure reveals a sharp rise in self-citations beginning immediately
after the acquisition, suggesting that acquiring firms intensify their reuse or integration of
acquired technologies. This internal uptake likely reflects strategic alignment or absorptive
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capacity following the merger.

Figure 10: Patents of later targets within CPC group

To assess whether the overall citation increase is limited to the acquirer or reflects broader
innovation spillovers, we re-estimate the event-study specification from earlier sections, but
exclude all citations made by the acquiring firm. Figure 11 displays the resulting event-study
coefficients, focusing exclusively on citations from non-acquirer patents.

The figure shows that while the magnitude of the effect is somewhat reduced relative to
the full-sample specification (see Figure 7), a strong and sustained post-acquisition increase in
citations remains. Importantly, the pre-trend flattens further in this specification, reinforcing
the idea that internal citations may partly drive early citation growth. Nonetheless, the
continued post-acquisition rise in non-acquirer citations suggests that the acquired knowledge
becomes more visible and influential in the broader technological ecosystem and not just
within the acquiring firm.

Column (5) of Table 8 reports the corresponding difference-in-differences estimates for
the non-acquirer citation sample. The results are consistent with the event-study graph:
the coefficient on the post-acquisition indicator remains positive and statistically significant,
although somewhat smaller in magnitude. The estimated effect is approximately 0.85 cita-
tions per year, down from 1.13 in the baseline specification that includes all citations. This
confirms that the observed citation effects are not exclusively driven by self-citations and
reflect genuine external spillovers.

31



Figure 11: Non-acquirer citations only

These results provide compelling evidence that the citation boost observed after acqui-
sitions is not simply an artifact of internal referencing by the acquirer. Rather, acquired
patents experience greater visibility and influence within the broader innovation ecosystem,
with more citations coming from unaffiliated firms. The fact that the effect persists after
removing self-citations underscores the potential for knowledge spillovers generated by inte-
gration, diffusion, or signaling effects following acquisition. Taken together with the event-
study results in Figure 11, column (5) of Table 8 strengthens the case that acquisitions can
enhance rather than hinder the external relevance of the acquired firm’s technology.

Thus, acquisitions by large digital firms appear to enhance both internal reuse and ex-
ternal diffusion of acquired technologies. While acquirers themselves are often the first to
benefit from newly integrated capabilities, the effects extend beyond the boundaries of the
firm and contribute to broader innovation dynamics.

In addition to distinguishing self-cites from external cites, we might want to aggregate all
citations from “families” where many patents correspond to the same underlying invention.
To implement that idea, we aggregate citations across all patents belonging to the same
DOCDB family as the focal patent. This approach accounts for cases where the same inven-
tion is patented in multiple jurisdictions or where new claims are added through continuation
applications, potentially leading to “duplicative” citations (Kuhn, Younge and Marco, 2020).

Column (6) of Table 8 and Figure A.5 in the appendix report results using citations
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aggregated at the patent family level. The pattern is again consistent with our previous
analysis.There is little to no pre-trend, followed by a clear and sustained post-acquisition
rise in citations. The estimated effect is approximately 0.43 citations per year which is
still economically and statistically significant though substantially smaller than our baseline
results.

These alternative specifications reinforce the core finding that acquisitions are associated
with an increase in the visibility and diffusion of acquired patents. The robustness of the
results to patent family aggregation suggests that our main conclusions are not driven by
mechanical features of patent structure.

4.3 Employee Retention and Citations

In this section, we use workforce data from Revelio Labs to examine how employee retention
following acquisitions shapes the diffusion of acquired technology. By focusing on employee
tenure and turnover, we aim to understand how the stability of the acquired workforce
influences the diffusion of innovation as measured by citations.

To explore the link between post-acquisition workforce integration and the citation impact
of acquired patents, we examine whether citation effects vary with employee retention. As
Section 3.4 shows, retention of target firm employees drops sharply in the years following an
acquisition, but the extent of this decline varies across deals. If innovation outcomes depend
not only on the acquisition itself but also on the successful integration of human capital,
we should expect heterogeneity in citation effects based on how many employees remain at
the acquiring firm. We test this hypothesis by interacting the post-acquisition treatment
indicator with the (demeaned) share of target employees still employed at the acquirer three
years after the deal.

Table 9 presents estimates from a regression specification that examines whether the
citation effects of acquisitions vary with post-acquisition employee retention. Specifically,
we interact the post-treatment indicator with the (demeaned) share of target employees still
employed at the acquiring firm three years after the acquisition, using data from Revelio
Labs (as shown in Figure 4). The dependent variable remains annual forward citations per
patent, and we include the same fixed effects and age controls as in prior specifications.

Table 9 presents regression results examining how the post-acquisition citation effect
varies with the share of the target workforce retained at the acquiring firm. Column (1)
includes CPC group-year and age fixed effects, while column (2) uses patent fixed effects
and higher-order polynomial age controls instead of age fixed effects.

Consistent with our previous analysis, the coefficient on the post-acquisition indicator is
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Table 9: Citation effect by retention rate at the acquirer

(1) (2)
#Citations #Citations

PostAcquisition 1.00∗∗∗ 1.17∗∗∗
(0.12) (0.12)

Post×Retention -1.06∗ -0.79∗
(0.43) (0.40)

Acquired 0.58∗∗∗
(0.05)

Acquired×Retention 0.79∗∗∗
(0.23)

CPC × Year FE yes yes
Patent ID FE no yes
Age FE yes no
Age2, Age3 no yes
Adj. R2 0.05 0.41
Avg. Outcome 0.81 0.81
SD Retention Rate 0.20 0.20
N 37923926 37923926
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

positive and significant in both columns: 1.00 in column (1) and 1.17 in column (2), confirm-
ing that acquired patents receive more citations after the acquisition. However, the interac-
tion between the post-acquisition indicator and the demeaned retention rate is negative and
statistically significant in both specifications (−1.06 and −0.79, respectively). These coeffi-
cients imply that the citation boost from acquisition is smaller in deals with higher employee
retention. At the sample mean retention rate of 45%, the estimated citation gain is near
the baseline level, but it declines substantially as retention increases. For instance, based
on column (2), acquisitions with the highest retention rates in our sample (around 85%)
experience a citation gain that is lower by 0.3 citations per year compared to acquisitions
with mean retention rates.

Because column (1) does not include patent fixed effects, we also include a dummy for
treated patents (those belonging to acquired firms) as well as an interaction between this
dummy and the demeaned retention rate. The positive coefficient on the treated dummy
(0.58) indicates that acquired patents already had more citations prior to the acquisition
compared to patents from non-acquired firms. Moreover, the positive and statistically sig-
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nificant interaction term (0.79) shows that this pre-treatment citation advantage was even
greater for patents from targets that would go on to have higher employee retention. This
reinforces the interpretation that baseline differences in citation levels were associated with
retention-related characteristics of the targets. At the same time, the post-treatment in-
teraction remains negative and significant, suggesting that although high-retention targets
started with a higher citation baseline, their acquired patents experienced a smaller increase
in citations after the acquisition. This pattern is consistent with the idea that innovation
spillovers may be more pronounced when employees leave the acquirer, diffusing knowledge
into the broader ecosystem.

Taken together, these results suggest that greater retention of target employees may
dampen the citation surge typically observed after acquisitions. or, in more colloquial terms,
a successful acqui-hire may be bad news for spillovers. One plausible explanation is that
when retention is low, departing employees may disseminate knowledge externally by joining
or founding other firms, leading to broader diffusion and more citations. This mechanism
is consistent with the model of Silicon Valley “job hopping” proposed in Fallick, Fleischman
and Rebitzer (2006). Conversely, when more of the workforce is retained, innovations may
remain embedded within the acquiring firm, limiting external visibility. The results are
robust across both specifications and offer new insight into the relationship between labor
mobility and post-merger knowledge spillovers.

In addition, these results suggest that citation effects following acquisition are not driven
by continuity of the target workforce. Instead, they may be amplified in cases where ac-
quisitions trigger more substantial organizational restructuring, redirection of innovation re-
sources, or knowledge spillovers through employee mobility. Thus, employee departures may
not only signal a breakdown in integration, but may also facilitate broader dissemination of
innovation beyond the acquiring firm’s boundaries.

5 Conclusion

In this paper we investigated the impact of acquisitions by major digital incumbents on
innovation in targeted technological domains. Using a novel dataset that links over 1,000
startup acquisitions by eight large technology firms to detailed patent-level information, we
implemented an event-study framework to trace changes in both the quantity and quality
of innovation before and after acquisition events. By analyzing patenting trends within
Cooperative Patent Classification (CPC) groups, and tracking citation patterns to acquired
patents, we provided a comprehensive assessment of how these deals shape the evolution of
technological activity.
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Our results offer a nuanced view of the “killer acquisition” narrative. While acquisitions
by large digital firms are often viewed with suspicion, we find little evidence that these deals
suppress innovation. On the contrary, patenting activity tends to increase in CPC groups
following an acquisition, especially when there are follow-on acquisitions in the same domain.
Matched control group comparisons confirm that this pattern is not driven by differential pre-
trends. Citation-based analyses further reinforce these findings: patents owned by acquired
firms receive significantly more citations after the acquisition, and this increase is not solely
due to self-citations by the acquirer. Spillovers to external innovators play a meaningful role,
suggesting broader knowledge diffusion rather than internal hoarding.

Importantly, we document heterogeneity in these effects. The strongest post-acquisition
innovation responses occur when the acquirer had prior patenting experience in the CPC
group and when the acquisition is followed by additional deals in the same domain. First
acquisitions in these acquisition waves show especially large increases in citations, indicating
that the strategic sequence and technological alignment of acquisitions matter for post-
merger innovation outcomes. Robustness checks that use grant-year citations and patent
family aggregations confirm the reliability of our results.

From a policy perspective, our findings suggest that many acquisitions by digital in-
cumbents are motivated by complementarity rather than suppression. While this does not
rule out the existence of killer acquisitions in specific cases, the evidence indicates that, on
average, these deals promote rather than stifle technological progress. These insights have
implications for merger review in digital markets, where blanket skepticism may overlook
the potential for innovation-enhancing firm integration.
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A Appendix

A.1 Citation Analysis Structure

To better understand the structure of the citation analysis, Figure A.1 plots the number of
treated patents by event time (i.e., by the number of years before or after the acquisition of
their parent firm). This figure provides insight into the distribution of observation counts
across event years in the citation-level regressions. The horizontal axis indicates the number
of years relative to the acquisition event (with zero denoting the year of acquisition), while
the vertical axis shows the total number of patent-year observations in each relative year.

Figure A.1: Number of treated patents by year relative to acquisition

The distribution is roughly symmetric around the acquisition year, but with a notable
concentration of observations in the period spanning five years before to five years after
acquisition. This reflects both the temporal clustering of patent filings around the acquisition
event and our balanced panel construction, which restricts some specifications to patents with
sufficient data on both sides of the event window. The drop-off in observations beyond these
bounds is due to right- and left-censoring in the patent dataset.

Importantly, this pattern provides some context for the event-study estimates presented
later in the citation analysis. Since the majority of variation is concentrated within a ten-
year window surrounding acquisition, the identification of pre- and post-trends relies most
heavily on this central range. The balanced coverage across years also supports the credibility
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of dynamic citation profiles, allowing us to assess both anticipatory trends and longer-run
post-acquisition effects.

A.2 Different Control Groups

In the main citation analysis, we use other patents in treated CPC groups as the control
group. This ensures that the treated and control patents are exposed to the same broad
technological environment, but it also means that any citation spillovers within the CPC
group are captured as part of the treatment effect. To assess the robustness of our results to
alternative definitions of the control group, we consider three complementary specifications:
(1) all patents in CPC sections G and H, (2) patents in untreated CPC groups, and (3) other
patents owned by the acquiring firm.

Each specification addresses a distinct concern. The G&H sample allows us to test
whether the observed citation effects persist when comparing to a much broader cross-section
of digital technologies. The untreated CPC group sample restricts attention to patents in
domains untouched by acquisitions, offering a cleaner comparison free from potential intra-
group spillovers. Finally, using other patents by the acquirer allows us to ask whether the
citation gains of the acquired firm’s patents exceed those of the acquirer’s own preexisting
technologies.

A.2.1 All Patents in G and H

As a first robustness check, we broaden the control group to include all patents in CPC
sections G (Physics) and H (Electricity). These sections cover a wide array of digital tech-
nologies, including semiconductors, computing, telecommunications, and electronic control
systems. By comparing acquired patents to this broader technological baseline, we can assess
whether the observed citation effects are specific to narrowly defined CPC groups or reflect
more general changes in patent influence.

Table A.1 reports regression results using this expanded control group for specifica-
tions (4) and (5). The estimates are similar in magnitude and significance to our main
results. In column (1), which includes CPC-year fixed effects and a treatment indicator, the
post-acquisition effect is 1.17 citations per year. In column (2), which adds patent fixed ef-
fects and polynomial age controls, the effect remains strong at 1.16 citations per year. These
coefficients confirm that acquired patents receive substantially more citations following the
acquisition, even relative to a much broader cross-section of patents in related technological
fields.

Figure A.2 presents the corresponding event-study coefficients from specification (6). The

40



Table A.1: Control group: All patents in G and H

(1) (2)
#Citations #Citations

Post 1.17∗∗∗ 1.16∗∗∗
(0.10) (0.09)

Treated 0.50∗∗∗
(0.05)

Age2 -0.02∗∗∗
(0.00)

Age3 0.00∗∗∗
(0.00)

CPC × Year FE yes yes
Patent ID FE no yes
Age FE yes no
Adj. R2 0.05 0.41
Avg. Outcome 0.73 0.73
N 61916941 61916937
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

graph shows a flat pre-trend, followed by a pronounced and sustained increase in citations
beginning in the acquisition year. This pattern closely mirrors the baseline event study shown
in Figure 7, indicating that the citation gains are not driven by idiosyncratic comparisons
within specific CPC groups. Rather, the boost in patent visibility appears to be a robust
and generalizable feature of the post-acquisition environment.

Overall, these results demonstrate that our findings are not sensitive to the choice of con-
trol group. Even when using all G and H patents which include many unrelated technologies,
as a benchmark, acquired patents stand out in terms of increased citation activity.

A.2.2 Patents in Untreated CPC Groups

As a second robustness check, we restrict the control group to patents in CPC groups that are
never affected by any acquisition in our sample period. This approach offers a cleaner com-
parison group, free from potential intra-group spillovers that might contaminate estimates
when using patents from treated CPC groups as controls. However, this control group may
also differ systematically in technological intensity or market relevance, which we address
through fixed effects and specification controls.
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Figure A.2: Event study, control group: All patents in G and H

Table A.2 presents the regression results using untreated CPC groups as the comparison
set for specifications (4) and (5). In both specifications, the coefficient on the post-acquisition
indicator remains large and statistically significant. In column (1), the estimated effect is
2.20 citations per year which is substantially higher than in the baseline. In column (2),
which includes patent fixed effects and polynomial age controls, the estimate is 1.71. The
larger magnitude of these effects is likely due to differences in baseline citation levels: the
untreated CPC groups tend to be less active, with an average citation rate of 0.55 compared
to 0.80 in the treated sample. As a result, any post-treatment shift appears relatively larger
in absolute terms.

Figure A.3 shows the event-study coefficients τs from specification (6), again using un-
treated CPC groups as the control. The dynamic pattern is consistent with our core findings:
citations to acquired patents begin to rise sharply in the year of acquisition and continue to
grow over the following years. Importantly, there is no evidence of a pre-trend, further sup-
porting the credibility of the event-study design. While the magnitude of the post-treatment
rise is slightly higher in this specification, the overall trajectory closely matches the baseline
results.

These findings provide further support for the interpretation that acquisitions lead to
increased technological influence of the acquired patents. Even when comparing to entirely
unaffected CPC domains, the observed rise in citations persists.
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Table A.2: Control group: Patents in untreated CPC groups

(1) (2)
#Citations #Citations

Post 2.20∗∗∗ 1.22∗∗∗
(0.21) (0.09)

Age2 -0.02∗∗∗
(0.00)

Age3 0.00∗∗∗
(0.00)

CPC × Year FE yes no
Year FE no yes
Patent ID FE no yes
Age FE yes no
Adj. R2 0.05 0.34
Avg. Outcome 0.55 0.55
N 17740111 17744080
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

A.2.3 Other Patents by Acquirer

As a final robustness check, we use as the control group all other patents owned by the
acquiring firm. This comparison allows us to test whether the post-acquisition increase in
citations to acquired patents reflects general firm-level dynamics such as an overall rise in
patent visibility, increased marketing, or changes in citation practices within large firms
or whether the acquired patents exhibit a uniquely strong response. If citation growth is
observed only for acquired patents and not for the acquirer’s own portfolio, this strengthens
the case that the effect is driven by the acquisition itself rather than broader shifts at the
firm level.

Table A.3 reports the corresponding regression estimates for specifications (4) and (5).
In column (1), which includes CPC-year fixed effects and a treatment indicator, the post-
acquisition coefficient is 0.92 citations per year. In column (2), which adds patent fixed
effects and flexible age controls, the estimate is slightly lower at 0.88 citations. While these
magnitudes are smaller than in the baseline specification using other treated CPC patents as
the control group, they remain statistically and economically significant. Importantly, the
average citation rate in the acquirer’s patent portfolio is relatively high (0.98), making this
a conservative benchmark.

Figure A.4 shows the event-study coefficients from specification (6), again comparing ac-
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Figure A.3: Event study, Patents in untreated CPC groups

quired patents to other patents owned by the acquiring firm. The pre-trend is relatively flat,
indicating no divergence in citation trajectories prior to the acquisition. After the acqui-
sition, however, citations to acquired patents increase noticeably relative to the firm’s own
baseline. This suggests that the integration of external technologies delivers a measurable
boost in visibility and relevance beyond what the acquirer’s existing technologies experience.

These results again show that the citation gains following acquisition are not merely part
of a broader firm-wide trend. Even when compared directly to the acquirer’s own innovation
output, acquired patents receive a larger citation boost.
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Table A.3: Control group: Patents by acquirer

(1) (2)
#Citations #Citations

Post 0.92∗∗∗ 0.88∗∗∗
(0.10) (0.09)

Treated 0.31∗∗∗
(0.05)

Age2 -0.02∗∗∗
(0.00)

Age3 0.00∗∗∗
(0.00)

CPC × Year FE yes yes
Patent ID FE no yes
Age FE yes no
Adj. R2 0.07 0.45
Avg. Outcome 0.98 0.98
N 2978341 2978341
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Figure A.4: Event study, Patents by acquirer
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A.3 Additional Figures

This section provides supplementary figures that complement and extend the main results
presented in the paper.

Figure A.5: Patent family citations

Figure A.6: Years to next own acquisition within the same CPC group
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Figure A.7: Years to next acquisition, addressing selection

(a) Years truncated at 6 years
(b) Years truncated at 6 years, only acq
year<2015

Figure A.8: First acquisition events within CPC group
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Figure A.9: Matched event studies; All first acquisition events

(a) Amazon (b) Apple (c) Cisco (d) Google

(e) Intel (f) Microsoft (g) Qualcomm

Figure A.10: Retention rates by acquirer

(a) Amazon (b) Apple (c) Cisco (d) Google

(e) Intel (f) Microsoft (g) Qualcomm
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